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1 Introduction

How large are the economic gains from improving public transit systems in cities? With 2.5 billion

people predicted to move mostly into developing country cities by 2050, governments will spend vast

sums on mass transit to reduce the congestion associated with rapid urban growth.1 While existing

approaches focus on the value of travel time saved (VTTS), measuring the benefits of these systems

is challenging.2 Individuals may change where they live and work, firms may expand or enter in

newly accessible locations, and wages and house prices may adjust to this reallocation. Such effects

are missed by time savings, and indirect effects may be felt throughout the city even on those who do

not use the system. The lack of detailed intra-city data in less developed countries coinciding with

the opening of large transit systems makes the task of evaluating these impacts even more daunting.

This study investigates the impact of new transit infrastructure on the structure of cities and the

welfare of their inhabitants. It does so in the context of the construction of the world’s most-used

Bus Rapid Transit (BRT) system–TransMilenio–in Bogotá, Colombia. Opened in 2000, TransMilenio

has a daily volume of over 2.2 million trips and operates similar to a subway. Buses run in dedicated

lanes with express and local services, and passengers board buses at stations which they pay to enter

using smart cards. BRT provides an attractive alternative to subways in rapidly growing developing

country cities: they can deliver similar reductions in commuting times at a fraction of the cost, and are

much faster to build.3 This paper uses new sources of data covering 2,800 census tracts on residence,

employment, commuting patterns, and land markets spanning the system’s construction.

Prior to TransMilenio, poor and low-educated workers relied on a network of informal buses

which, on average, were 30% slower than cars. This suggests new transit may affect the distribu-

tion of welfare across the rich and poor. To better understand the implications of improving transit

infrastructure, this paper develops a quantitative urban model. Multiple worker skill groups have

non-homothetic preferences over transit modes and residential locations, and make decisions over

where to live and work and which travel mode to use to commute. Cars are faster than public transit,

but are expensive. In equilibrium, rich, high-educated workers are more likely to buy cars while the

poor rely on public transit. While this suggests the poor are likely to benefit most from improved

public transit, worker types differ in their willingness to substitute between alternative residential

and employment locations and are exposed to equilibrium effects on wages and house prices.

While this model is rich enough to speak to distributional impacts, a special case admits an even

simpler sufficient statistics approach to measure the aggregate from new transit infrastructure and

how it it reshapes economic activity across the city. This approach has appeal since these statistics

are transparently estimated through linear regression, and because the approach is applicable in a

1McKinsey (2016) suggests that a need for $40 trillion of spending to close the transport infrastructure gap. Combining
the average subway distance from Gonzalez-Navarro and Turner (2018) and cost estimates from Baum-Snow and Kahn
(2005) indicates that the average subway system costs $27.81bn in 2017 dollars to build.

2E.g. Train and McFadden (1978), Small and Verhoef (2007), also used the World Bank (Mackie et. al. 2005)
3The per mile construction cost of the subway in Colombia’s second largest city, Medellín, was 10 times that of Trans-

Milenio, with similar system speeds. TransMilenio took less than 18 months to construct, compared to the 12 years taken
by Metro Medellín. The average per mile construction cost of BRT is one-tenth of rail (Menckhoff 2005).
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wide class of log-linear models that allow for endogenous firm location choice, endogenous housing

supply, capital in the production function, and preferences over leisure (among others). These statis-

tics are (i) a location’s change in “commuter market access” (CMA), which summarizes worker and

firm access to each other through the commuting network, and (ii) the elasticities of residential pop-

ulation, employment and floorspace prices to CMA, and the elasticity of commute flows to commute

costs. Across alternative models, the structural parameters in the reduced-form elasticities of eco-

nomic activity to CMA differ, but the reduced-form elasticities and the change in CMA are sufficient

statistics to specify the impacts of changes in transit infrastructure on economic activity.4

The construction of TransMilenio provides variation in commute costs that can be used to es-

timate these elasticities, but concerns remain that these were endogenous to local unobserved eco-

nomic fundamentals. Instead of leaning on a single approach, this paper exploits a variety of Trans-

Milenio’s institutional features to establish its causal impact on Bogotá’s structure. First, I digitize

four different plans from the 1980s and 1990s for a new transit network in Bogotá and include as re-

gressors both the realized change in CMA due to TransMilenio and the hypothetical change had the

network been built under these plans. This serves both as a falsification check (by showing the hypo-

thetical changes had no impact on economic activity conditional on the realized CMA change) and

controls for the omitted variable bias that can arise from locations’ non-random exposure to infras-

tructure changes (Borusyak and Hull 2021). Second, I exploit TransMilenio’s staggered rollout across

three phases through event studies and falsification tests and demonstrate that there is no growth

in outcomes prior to line openings. Third, I use variation in CMA induced by changes in the net-

work more than 1.5km from a location, which is less likely to be correlated with local unobservables.

Fourth, I condition on distance to the closest station to assess whether effects are driven by changes in

accessibility rather than by other features of stations (e.g. changes in foot traffic or pollution). Fifth,

I construct cost-shifting instruments to predict TransMilenio’s routes based both on a historical tram

network and engineering estimates of the cost to build BRT on different types of land.

After showing that the log-linear relationships between changes in outcomes and CMA predicted

by this class of models are borne out in the data, I use the sufficient statistics approach to quantify

the aggregate effects of the new infrastructure. A key theoretical result that arises through the ap-

plication of the envelope theorem to the social planner’s problem in an efficient economy is that the

elasticity of welfare to a change in transit infrastructure is proportional to a weighted average of time

savings. This is precisely the VTTS expression used in the literature: when the equilibrium is efficient

and the change in infrastructure is infinitesimally small, only the direct effects of time saved matter.

However, my results show that the VTTS only accounts for 54% of the total welfare gains under the

equilibrium model. The size of the shock explains one-third of the gap and the externalities explain

two-thirds. Welfare rose by 2.28% in the baseline case where the BRT does not cause migration into

Bogotá from the rest of Colombia, and 0.6% with migration. GDP per capita rose by 2.5-5% in these

cases respectively, net of construction and operating costs. Overall, TransMilenio can account for

4More precisely, as Proposition 1 establishes, the reduced form elasticities and changes in CMA are sufficient statistics
across all such models to compute the relative change in economic activity in any location. To pin down the overall level
of changes, one or two additional parameters are usually needed. These differ by model and are often readily calibrated.
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between 2.96-14.36% of GDP growth in Bogotá from 2000 to 2016, and up to 29.24% of observed pop-

ulation growth. While these findings are specific to Bogotá, the framework can be applied to other

cities in both developed and developing countries. While I do not find evidence TransMilenio im-

pacted travel times on other modes, an extension of the model allowing for traffic congestion leaves

these results qualitatively unchanged.

I next estimate the full model to understand how these welfare gains are shared between the rich

and poor. Ultimately, welfare inequality rises by a mild 0.55% due to the BRT. On the one hand, low-

skilled workers benefit from improved transit through higher use. On the other hand, the incidence

also depends on how easily individuals substitute between different employment and residential lo-

cations and the extent to which each group faces lower wages through the increased supply of com-

muters traveling through the network. These forces favor high-skilled workers. This result is robust

to allowing for employment in domestic services and alternative home ownership assumptions.

Two sets of counterfactuals draw additional policy insights. First, I evaluate a “land value cap-

ture” (LVC) scheme under which development rights to increase building densities near stations are

sold by the government to developers. This increases housing supply and raises government rev-

enue, and similar schemes have seen great success in Asian cities like Hong Kong and Tokyo. How-

ever, one of the main criticisms of TransMilenio was that the city experienced such a large change in

transit without any adjustment to zoning laws to allow housing supply to respond. A well-targeted

scheme would have increased the welfare gains from TransMilenio by around 44%, while govern-

ment revenues would have covered 6-23% of the BRT’s capital costs depending on the migration

response from the rest of Colombia. This highlights the return to cities pursuing an integrated transit

and land use policy. Second, by measuring the impacts of counterfactual networks I find that the

system of feeder buses, which run on regular roads and connect dense, outlying residential neigh-

borhoods with TransMilenio terminals, have greater welfare gains than either of the two key trunk

lines (conditional on the rest of the network being built). This emphasizes the importance of cheap,

last-mile services that increase access to mass rapid transit infrastructure.

A large body of work examines the impact of transportation infrastructure on economic activity.

One strand examines the impact of new transit infrastructure and typically measures changes in

population and property prices as a function of distance to the central business district (Baum-Snow

2007; Gonzalez-Navarro and Turner 2018; Baum-Snow et. al. 2017) or distance to stations (Gibbons

and Machin 2005; Glaeser et. al. 2008; Billings 2011). This paper adds to this work by developing a

theory-consistent sufficient statistics approach to measure the impacts of transit infrastructure. The

CMA measures used in this approach embrace the spillovers across spatial units induced through a

commuting network that can invalidate identification assumptions in distance-based regressions.5

A second strand of this literature explores the effect of infrastructure between regions on eco-

nomic development through goods market access in models where agents live and work in the same

location (Redding and Sturm 2008; Bartelme 2018; Donaldson and Hornbeck 2016; Donaldson 2018;

5In addition, since the change in accessibility from a station depends on the geography of the city and the transit
network, average treatment effects based on distance to stations in one context might not be externally valid in another. The
CMA approach predicts different treatment effects from different transit networks based on the specific network structure.
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Alder 2019). This paper considers a different class of urban models where individuals can live and

work in separate locations. This distinction leads to meaningful differences in the way the same tran-

sit network might affect firm access to workers and resident access to jobs in any location.6 I use

the context provided by a large, real world change in transit infrastructure to show these differential

shocks to employment and residence capture the reallocation of economic activity in the city.

This paper also contributes to the growing body of work on quantitative spatial models (Ahlfeldt

et. al. 2015; Allen et. al. 2015; Bird and Venables 2019; Fajgelbaum and Schaal 2020; Monte et. al.

2018; Owens et. al. 2020; Severen 2021; Bryan and Morten 2019; Heblich et. al. 2020; Adao et. al. 2019;

Allen and Arkolakis 2021). Its main contribution lies in the development of a model in which multiple

worker groups have non-homothetic preferences over transit modes and residential amenities. This

allows the model to capture how new transit can affect the distribution of welfare across groups

through their differential reliance on public transit, and through residential neighborhood choice

and gentrification when house prices rise in response to better transit access.

Lastly, this paper relates to work in transportation economics measuring the benefits of improved

transportation through the VTTS (Train and McFadden 1978; Small and Verhoef 2007). It connects

with work measuring agglomeration externalities, providing intra-city estimates of productivity and

amenity spillovers in a developing country city, identified using an expansion in the transit network

that separately shifts the supply of labor and residents across the city.7

The paper proceeds as follows. Section 2 discusses the context of TransMilenio and the data.

Section 3 develops the model. Section 4 presents and estimates the sufficient statistics approach to

assess the BRT’s aggregate effects. Section 5 estimates the full model to measure its distributional

effects. Section 6 concludes.

2 Background and Data

2.1 TransMilenio: The World’s Most-Used BRT System

Background Bogotá is the economic center of Colombia, accounting for 16% and 25% of population

and GDP respectively. In 1995, the average work commute took 55 minutes, more than double that

in US cities. The vast majority were taken by bus (73%), followed by car (17%) and walking (9%).8

Despite its importance, public transit was highly inefficient. Bus companies operated routes allocated

to them by the city, but a lack of entry controls led to a large over-supply of vehicles. Low enforcement

meant that up to half of the city’s bus fleet operated illegally (Cracknell 2003). Disregard of bus stops

led to frequent boarding and alighting along curbs, further reducing traffic flows.

6In trade models, firm and consumer market access often equal each other under balanced trade (e.g. Donaldson and
Hornbeck 2016). One can show in my setting that it is precisely the absence of balanced trade in commuters (which would
imply residence equals employment in each location, which clearly fails in the data) that delivers the BRT’s very distinct
shocks to resident and firm CMA shown in Figure 1.

7Rosenthal and Strange (2004) provide a review. Other papers using potentially exogenous sources of variation in the
density of (i) employment include Combes et. al. (2010), Greenstone et. al. (2010), Kline and Moretti (2014), Ahlfeldt et. al.
(2015) and (ii) residence include Bayer et. al. (2007), Guerrieri et. al. (2013), Diamond (2016), Giannone (2021).

8Bicycles and motorbikes account for the remaining 1% of commutes.
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At the start of his first term as mayor of Bogotá, Enrique Peñalosa wasted no time in transforming

the city’s transit infrastructure. TransMilenio was approved in March 1998, and its first phase opened

a mere 21 months later, adding 42 km along Avenida Caracas and Calle 80, two arteries of the city.9

Phases 2 and 3 added an additional 70km in 2006 and 2012, creating a network spanning the majority

of the city. Today, the system is recognized as the “gold standard” of BRT and with more than 2.2mm

riders a day using its 147 stations. It is the most heavily utilized system of its kind in the world

(Cervero et. al. 2013).10 Its average operational speed of 26.2kmh reported during phase one is on

par with that of the New York subway (Cracknell 2003), and far surpassed the reported 10kmh speeds

on the incumbent bus network (Wright and Hook 2007).

The system involves exclusive dual bus lanes running along the median of arterial roads in the

city separated from other traffic. Buses stop only at stations which are entered using a smart card so

that fares are paid before arriving at platforms. Dual lanes allow for both express and local services,

and passing at stations. Accessibility for poorer citizens in the urban periphery is increased through

a network of feeder buses that use existing roads to bring passengers to “portals” at the end of trunk

lines at no additional cost. Free transfers and a fixed fare further enhance the subsidization of the

poor (at the periphery) while the government sets fares close to those offered by existing buses.

BRT is a particularly attractive alternative to subways in developing country cities since it (i) de-

livers similar reductions in commute times at a fraction of the cost and (ii) is much faster to build.

These features have led to systems being built in more than 200 cities, the vast majority constructed

over the past 15 years in Latin America and Asia (BRT Data 2017).

Route Selection and System Rollout The corridors built during the first phase of the system were

consistently mentioned in 30 years of transportation studies as first-priority for mass transit (Crack-

nell 2003). These studies chose routes based on current and future demand levels and expected

capital costs. The result was a network that connected the city center with dense residential areas in

the north, northwest and south of the city (Hidalgo and Graftieux 2005). The number of car lanes

was left unchanged either because existing busways were converted or due to road widening.11

Three features make TransMilenio an attractive context for empirical analysis. First, since 1980

multiple administrations worked on proposals for a subway system. These can be used as placebo

checks. Second, having identified neighborhoods in the city’s periphery to be connected with the

center, the final routes were chosen largely to minimize construction costs. Lines were placed along

wide arterial roads, which were cheaper to convert and determined by the the city’s historical evolu-

tion. Third, TransMilenio was was rolled out quickly, primarily so that a portion could be completed

within Mayor Peñalosa’s term that ran between 1998 and 2001. The unanticipated nature of the sys-

tem’s construction and the staggered opening of lines across three phases provide sources of time
9While the anticipation of a system may predate its inauguration, TransMilenio went from a “general idea” to imple-

mentation in only 35 months (Hidalgo and Graftieux 2008). A “pico y placa” driving restriction implemented two years
prior to TransMilenio had little impact on overall car use (Lawell et. al. 2017).

10A map of each system component and their opening date is provided in Figure A.1, while Figure A.2 shows a station
before and after TransMilenio was built. For comparison, the London tube carries 5 million passengers per day over a
network of 402km, giving it a daily ridership per km of 12,000 compared to TransMilenio’s 20,000.

11See Cracknell (2003) for discussion. This was confirmed through inspection of satellite images.
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series variation used in the analysis.

One central criticism of TransMilenio was its singular focus on improving urban mobility with-

out coordinated changes in land use regulation (Bocarejo et. al. 2013): Appendix G shows that

housing supply did not respond to the system’s construction. An integrated land use and transit pol-

icy that increases housing densities near stations allows more residents and firms to take advantage

of improved commuting infrastructure, and sales of development rights can finance construction. In

Section 5.3, I assess the impact of TransMilenio had Bogotá pursued a such an integrated policy.

Trip Characteristics Appendix G summarizes TransMilenio use. First, it is a quantitatively im-

portant mode of transit used more for longer trips than other modes. Second, TransMilenio provides

an increase in door-to-door speeds of around 17% over existing buses, but remains 8.1% slower than

cars. Third, when compared to other modes the BRT is used more for work commutes than leisure

trips. TransMilenio’s outsized role in commuting motivates the focus on access to jobs in this paper.

Yet this improvement in public transit may have differentially affected the rich and poor. Table

A.19 shows that prior to TransMilenio, commutes by car were around 35% faster than bus but that

low-educated Bogotanos were about 29% more likely to use buses than cars. Both facts are robust to

controlling for origin-destination pair fixed effects to adjust for differences in trip composition.

2.2 Data

This section summarizes the data used in the analysis, with further details in Appendix F. The pri-

mary geographic unit used in the analysis is the census tract (“sección”). Bogotá is partitioned into

2,799 tracts, with an average size of 133,303 square meters and a mean population of 2,429 in 2005.

These are contained within larger spatial units including 19 localities and 113 planning zones (UPZs).

The primary source of population data is the Department of Statistics’ (DANE) General Censuses

of 1993, 2005 and 2018. This provides the residential population of each block by education level.

College-educated individuals are defined as those with some post-secondary education.

Employment data come from two sources. The first is a census covering the universe of estab-

lishments from DANE’s 2005 General Census and 1990 Economic Census which report the location,

industry and employment of each unit. The second is a database of establishments registered with the

city’s Chamber of Commerce (CCB) in 2000 and 2015. The data from 2015 contain the location, indus-

try and employment of each establishment, but in 2000 employment is not provided. I therefore use

establishment counts to proxy for employment, but show that establishment count and employment

densities are highly correlated in years where both are available. An additional concern is that the

spatial distribution of registered establishments may be different from that of total establishments.

Figure A.7 shows that the employment and establishment densities in both years of the CCB data

are highly correlated with the 2005 census. Coverage is even across rich and poor neighborhoods,

suggesting both that the CCB data is fairly representative of overall employment. The main specifi-

cations examine changes from the CCB data, allowing employment over 10 years to respond to the

first two phases of the system, but additional analyses use the economic census data to examine the
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impacts of phase 1 on employment growth in the 4 years following TransMilenio’s opening.

Housing market data between 2000 and 2018 come from Bogotá’s Cadastre. Its mission is to keep

the city’s geographical information up-to-date; all parcels, formal or informal, are included and the

dataset covers 98.6% of the city’s more than two million properties (Ruiz and Vallejo 2010).12 It re-

ports the use, floorspace and land area, and value per square meter of land and floorspace, as well

as a number of property characteristics. Values in the cadastre are important for the government

since they determine property taxes which comprise a substantial portion of city revenue. In devel-

oped countries, these valuations are typically determined using information on market transactions.

However, Bogotá, like most developing cities, lacks comprehensive records of such data and those

available may be subject to systematic under-reporting. The city addresses this through an innova-

tive approach involving sending officials to pose as potential buyers in order to negotiate a sales price

under the premise of a cash payment (Anselin and Lozano-Gracia 2012). Professional assessors are

also sent to value at least one property in one of each of the city’s more than 16,000 “homogenous

zones” (Ruiz and Vallejo 2010). As a result, Figure A.8 shows the average price per square meter of

floorspace in the cadastre is highly correlated with the average purchase price per room reported in a

DANE worker survey. Importantly, the relationship is constant across rich and poor neighborhoods

which would not be the case were the cadastre over- or under-valuing expensive properties.

Microdata on commuting behavior come from the city’s Mobility Survey administered by the

Department of Mobility and overseen by DANE in 2005, 2011 and 2015. For 1995, I obtained the

Mobility Survey undertaken by the Japan International Cooperation Agency (JICA) to similar spec-

ifications as the DANE surveys in later years. These are representative household surveys in which

each respomdent was asked to complete a travel diary for the previous day. The survey reports the

demographic information of each traveler and household, including age, education, gender, industry

of occupation, car ownership and in some years income. For each trip, the data report the departure

time, arrival time, purpose of the trip, travel mode, and origin and destination UPZs.

Employment data by worker come from DANE’s Continuing Household Survey (ECH) between

2000 and 2005, and its extension into the Integrated Household Survey (GEIH) for the 2008-2015.

These are monthly, repeated cross-sectional labor market surveys covering approximately 10,000

households in Bogotá annually. Commute times between each pair of census tracts by mode are

computed in ArcGIS using shapefiles of each mode’s network from the city. Figure A.10 shows the

computed times correlate well with observed door-to-door times from the Mobility Surveys.

3 A Quantitative Model of a City with Heterogeneous Skills

This section develops a quantitative model that captures the impact of transit infrastructure on the

spatial organization of economic activity within a city. It departs from recent work (e.g. Ahlfeldt

et. al. 2015) by incorporating multiple skill groups of workers, commute modes and industries.

12High coverage was confirmed by overlaying the shapefile for available properties over satellite images. Underlining
the importance of property taxes, in 2008 they accounted for 19.8% of Bogotá’s tax revenues (Uribe Sanchez 2010).
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Locations differ in terms of commute times, housing floorspace, and (exogenous) amenities and pro-

ductivities.13 Workers decide where to live, whether to own a car, where to work, and which mode

of transit to use to commute. Public transit is available to everyone, but only those with a car have

the option to drive. Non-homothetic preferences for car ownership and residential amenities mean

the rich are more likely to own cars and live in high amenities neighborhoods. Amenities and pro-

ductivities also have components that depend on local economic activity. In equilibrium, floorspace

use, floorspace prices and wages adjust to clear markets.

3.1 Workers

The city is populated by worker groups indexed by g ∈ G = {L,H} with a fixed population L̄g. A

worker ω in group g chooses a location i in which to live, a location j in which to work, whether or

not to own a car a ∈ {0, 1}, and the mode of transport m to use to commute to work. Individuals de-

rive utility from consumption of a freely traded numeraire good (Ci(ω)); consumption of residential

floorspace (HRi(ω)); and an amenity reflecting the average preference of each group to live in i un-

der car ownership a (uiag). Owning a car provides an additional mode to use for commuting and an

amenity benefit, but comes at a fixed cost pcar. Workers are heterogeneous in their match-productivity

with firms in each location (ϵj(ω)), their preference for each residence-car ownership pair (νia(ω)), and

their disutility from commuting that reduces their productivity at work (dijm(ω) ≥ 1). Land is owned

by residents and rents are redistributed lump sum through payment π.14

Individuals have Stone-Geary preferences in which they need a minimum amount of floorspace

h̄ in which to live. The indirect utility of a worker who has made choice (i, j, a,m) is then

Uijamg(ω) = uiag

(
wjgϵj(ω)

dijm(ω)
− paa− rRih̄+ π

)
rβ−1
Ri νia(ω) (1)

where wjg is the wage per effective unit of labor, rRi is the price of residential floorspace in i, and

pa = pcar for a = 1 and 0 otherwise.

The fixed expenditures on cars and housing allow me to match the Engel curves I document for

car ownership and housing expenditure (Figure A.9) and drive sorting of workers over car owner-

ship and residential neighborhoods by income. When cars are quicker than public transit, the rich

are more willing to pay the fixed cost since their value of time is higher. The fixed expenditure on

subsistence housing means that the poor spend a greater share of their income on housing and are

attracted to low amenity neighborhoods where it is cheap.

Workers first choose where to live and whether or not to own a car, then where to work, and

finally which transportation mode to use.15 I solve their problem by backward induction.

Mode Choice Having chosen where to live and work and whether to own a car, individuals choose

13Since housing supply was unaffected by TransMilenio (Appendix G), total floorspace in a location is taken as given.
14Specifically π = L̄−1 ∑

i(rRiHRi + rFiHFi). This ensures that all the gains are accounted for within the model while
avoiding inefficiencies introduced by absentee landlords that would impact the application of Proposition 2.

15While allowing for joint decisions greatly complicates inversion and estimation of the model in the presence of fixed
components of expenditure and income, Appendix A.4 solves such a model and finds qualitatively similar results.
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which mode of transport to use to commute to work. Commuters have nested logit demand across

modes. A nest of public modes BPub ≡ {Walk,Bus,TransMilenio} is available to everyone while a

nest of private modes BPriv ≡ {Car} is available only to car owners. Therefore, the set of modes avail-

able depends on car ownership with M0 = BPub and M1 = BPub ∪ BPriv. Individuals have idiosyn-

cratic preferences across modes υijm(ω) such that the realized commute cost for individual ω is given

by dijm(ω) = exp (κtijm − bm + υijm(ω)), where tijm is the time it takes to travel from i to j using

mode m, bm is a preference shifter for mode m and κ controls the mapping between commute times

and costs. The commuter’s problem conditional on choice (i, j, a) is simply minm∈Ma {dijm(ω)}.

Following McFadden (1974), υijm(ω) are drawn from a generalized extreme value (GEV) distri-

bution

F (υij1, . . . , υijN ) = 1− exp

−
∑
k

∑
m∈Bk

exp (υijm/λk)

λk
 for k ∈ {Public,Private}.

This allows for correlation of preference shocks within nests, with λk → 0 under perfect correlation.

Standard results for GEV distributions imply that this leads to nested logit demand for travel

modes. Expected utility prior to drawing the shocks υijm(ω) is given by

Uijamg(ω) = uiag

(
wjgϵj(ω)

dija
− paa− rRih̄+ π

)
rβ−1
Ri νi(ω)

where dija = exp (κtija) and

tij0 = −λ
κ
ln

∑
m∈BPublic

exp
(
bm − κ

λ
tijm

)
(2)

tij1 = −1

κ
ln (exp(bcar − κtijCar) + exp (κtij0)) . (3)

Intuitively, the expected commute cost dija can be expressed as the inclusive value of commute times

available to the individual with car ownership a.16

Employment Choice Having chosen where to live and whether to own a car, individuals draw

a vector of match-productivities with firms across the city iid from a Frechet distribution F (ϵj) =

exp
(
−T̃gϵ

−θg
j

)
. Here θg measures the dispersion of productivities while T̃g controls their level.

With these draws in hand, linearity of (1) means that workers choose to work in the location that

offers the highest income net of commute costs maxj{wjgϵj(ω)/dija}. Standard results imply that the

probability a type-g worker who has made choice (i, a) decides to work in j is given by

πj|iag =
(wjg/dija)

θg∑
s(wsg/disa)θg

≡ (wjg/dija)
θg

ΦRiag
. (4)

16The set of shifters are normalized so that t̄iia = 0 ∀i, a. This is equivalent to always taking a weighted average travel
time of available modes, where the weights are the preference shifters bm.
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The term ΦRiag ≡
∑

s(wsg/disa)
θg is defined as Residential Commuter Market Access (RCMA). It

captures residents’ access to well-paid jobs from location i. Individuals are more likely to commute

to locations with a high wage net of commute costs (the numerator) relative to other locations (the

denominator). The sensitivity of commute decisions to commute costs is governed by the dispersion

of productivities, with a greater dispersion (lower θg) making choices less sensitive. Differences in

θg across groups will be important in determining the incidence of improved infrastructure, since it

controls the extent to which individuals are willing to bear high commute costs to work in a location.

Expected income prior to drawing the vector of match productivities is related to RCMA through

ȳiag = TgΦ
1/θg
Riag, (5)

where Tg is a transformation of the location parameter of the Frechet distribution.17

Residence and Car Ownership Choice In the first stage, individuals choose where to live and

whether or not to own a car to maximize expected indirect utility. The idiosyncratic preferences

νia(ω) are drawn from a Frechet distribution with shape parameter ηg > 1 and unit scale. The supply

of type-g individuals to location i and car ownership a is then

LRiag = λU,g

(
uiagỹiagr

β−1
Ri

)ηg
(6)

where ỹiag ≡ ȳiag − paa− rRih̄+ π is expected net income and λU,g is an equilibrium constant.18

3.1.1 Aggregation

Firm Commuter Market Access and Labor Supply The supply of workers to any location is found

by summing over the number of residents who commute there LFjg =
∑

i,a πj|iagLRiag. This implies

LFjg = w
θg
jgΦFjg (7)

where ΦFjg =
∑
i,a

d
−θg
ija

LRiag

ΦRiag

Labor supply is log-linear and depends on two forces. First, more workers commute to desti-

nations paying higher wages. Second, conditional on wages firms attract workers when they have

better access to them through the commuting network. This is captured through ΦFjg which I refer

to as Firm Commuter Market Access as it reflects firms’ access to workers. This is because individ-

uals care about wages net of commute costs. Total effective labor supply to a location is given by

17The constants in this section are Tg ≡ γθ,gT̃
1/θg
g , γθ,g = Γ

(
1− 1

θg

)
, λU,g = L̄g(γη,g/Ūg)

ηg and γη,g =

Γ
(
1− 1

ηg

)
where Γ(·) is the gamma function. Expected utility prior to learning match productivities is Uiag(ω) =

uiag

(
ȳiag − paa− rRih̄

)
rβ−1
Ri νia(ω).

18The model requires that π > paa+ rRih̄ ∀i such that ūiag > 0, since the Frechet distribution implies there will always
be a positive mass of individuals with income arbitrarily close to zero. This is satisfied when the model is taken to the data.
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L̃Fjg = ϵ̄jgLFjg, where ϵ̄jg is the average productivity of type-g workers who decide to work in j.19

Worker Welfare Properties of the Frechet distribution imply that average welfare in each location is

equal to the expected utility prior to the first stage given by

Ūg = γη,g

∑
i,a

(
uiagỹiagr

β−1
Ri

)ηg1/ηg

(8)

3.1.2 Firms

Technology There are s ∈ {1, . . . , S} industries that produce varieties differentiated by location

under perfect competition. Output is freely traded, and consumers aggregate each variety into the

numeraire under CES with elasticity of substitution σD > 1. Firms produce using a Cobb-Douglas

technology over labor and commercial floorspace

Yjs = AjsN
αs
js H

1−αs
Fjs

where Njs =

(∑
g

αsgL̃
σ−1
σ

Fjgs

) σ
σ−1

.

The labor input is a CES aggregate over each skill group’s effective labor with elasticity of substitution

σ, αs =
∑

g αsg is the total labor share, and Ajs is the productivity of location j for firms in industry

s which firms take as given.

Industries differ in terms of the intensity in which they use different types of workers αsg. All

else equal, industries like real estate and financial services demand more high-skilled workers while

others, such as hotels and restaurants, rely on the low-skilled.

Factor Demand Perfect competition implies that the price of each variety is equal to its marginal

cost pjs =Wαs
js r

1−αs
Fj /Ajs, where rFj is the price of commercial floorspace in j and

Wjs =

(∑
g

ασ
sgw

1−σ
jg

) 1
1−σ

is the cost of labor for firms of industry s in location j. Intuitively, labor costs differ by industry due

to their differential skill requirements. Solving the firm’s cost minimization problem and letting Xjs

denote firm sales, the demand for labor and commercial floorspace is20

L̃Fjgs =

(
wjg

αsgWjs

)−σ

Njs (9)

HFjs = (1− αs)
Xjs

rFj
. (10)

19In particular, ϵ̄jg = Tg

∑
i,a

π
−1/θg
j|iag

dija

πj|iagLRiag∑
r,o πj|rogLRrog

.
20Here Xjs = p1−σD

js X where X =
∑

i β(Ei − h̄rRiLRi) is total spending on goods in the city and Ei =
∑

g,a(ȳiag −
paa+ π)LRiag is total spending on goods and housing from residents in i.
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3.1.3 Floorspace

Market Clearing In each location there is a fixed amount of floorspace Hi, a fraction ϑi of which is

allocated to residential use and 1 − ϑi to commercial use. Market clearing for residential floorspace

requires its supply HRi = ϑiHi equals demand:

rRi = (1− β)
Ei

HRi − βh̄LRi
(11)

where LRi =
∑

g,a LRiag is the total number of residents in i. Likewise, the supply of commercial

floorspace HFj = (1− ϑi)Hj must equal that which is demanded by firms:

rFj =

∑
s(1− αs)

(
Wαs

js r
1−αs
Fj /Ajs

)1−ς
X

HFj
. (12)

Floorspace Use Allocation Landowners allocate floorspace ϑi to maximize profits. They receive rRi

per unit allocated to residential use, but land use regulations limit the return to each unit allocated to

commercial use to (1− τi)rFi. Since they maximize profits, we have

ϑi = 1 if rRi > (1− τi)rFi

(1− τi)rFi = rRi ∀{i : ϑi ∈ (0, 1)} (13)

ϑi = 0 if (1− τi)rFi > rRi

3.1.4 Externalities

Productivities A location’s productivity depends on both an exogenous component, Ājs, which

reflects features independent of economic activity (e.g. access to roads, slope of land), and the density

of employment in that location

Ajs = Ājs

(
L̃Fj/Tj

)µA

, (14)

where L̃Fj =
∑

s L̃Fjs is the total effective labor supplied to that location and Tj is its land area. The

strength of agglomeration externalities is governed by the parameter µA.

Amenities Amenities depend on an exogenous component, ūiag, which varies by car ownership

(e.g. leafy streets, proximity to getaways surrounding the city) and a residential externality that de-

pends on the college share of residents

uiag = ūiag

(
LRiH/LRi

)µU,g

. (15)

In contrast to existing urban models (e.g. Ahlfeldt et. al. 2015), endogenous amenities depend on

demographic composition across skill groups rather than the total density of residents. This seems

especially applicable in developing country cities that lack strong public goods provision. In Bogotá,

where crime is a significant problem, the rich often pay for private security around their buildings
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which increases the sense of safety in those areas. This externality provides an additional force to-

ward residential segregation, since the high-skilled are more willing to pay to live in high-amenity

neighborhoods and by doing so increase amenities further.21

3.1.5 Equilibrium

Definition. Given vectors of exogenous location characteristics {Hi, ūiag, Ājs, tija, τi}, city group-wise pop-
ulations {L̄g} and model parameters {h̄, β, α, pa, κ, θg, Tg, ηg, αsg, σD, σ, µA, µU}, an equilibrium is defined
as a vector of endogenous objects {LRiag, LFjg, wjg, rRi, rFi, ϑi, Ūg, π} such that

1. Labor Market Clearing The supply of labor by individuals (7) is consistent with demand for labor by
firms (9);

2. Floorspace Market Clearing The market for residential floorspace clears (11) and its price is consistent
with residential populations (6), the market for commercial floorspace clears (12) and floorspace shares
are consistent with land owner optimality (13);

3. Closed City Populations add up to the city total, i.e. L̄g =
∑

i,a LRiag ∀g, and rents are redistributed
lump sum to residents.

4 Empirical Analysis and Aggregate Effects

This section turns to a reduced-form analysis of how TransMilenio reshaped the organization of eco-

nomic activity in Bogotá. To guide this analysis, I use the insight that a special case of the model

delivers a log-linear reduced form between CMA and endogenous variables. The coefficients of

these regressions are in fact sufficient statistics to analyze the impact of transit on the distribution of

economic activity across the city and aggregate welfare. This approach has appeal in that it can speak

to the BRT’s aggregate effects, as its parameters can be transparently estimated via reduced form and

because it holds for a broad class of models. I then turn to estimating the full model in Section 5 to

measure its distributional impacts, which is of specific interest in this paper.

4.1 Reduced Form in a Special Case of the Model

Proposition 1 in Appendix C.2 shows that when there is one group of workers and firms and no fixed

elements of expenditure or income, the equilibrium can be written as

ln ŷRi = βR ln Φ̂Ri + eRi (16)

ln ŷFi = βF ln Φ̂Fi + eFi. (17)

The outcome variables ŷRi = [L̂Ri, r̂Ri] and ŷFi = [L̂Fi, r̂Fi] are changes in residential and commercial

21TransMilenio may directly impact productivities Ājs and amenities ūiag (e.g. through street improvements, crime,
pollution). My empirical results which control for distance to station (which captures such effects) show little effect on
CMA coefficients, motivating their exclusion from the model. Since Ahlfeldt et. al. (2015) find amenity and productivity
spillovers decay rapidly across a few blocks, and the median tract contains 14 blocks, I omit cross-tract effects.
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outcomes, consisting of residential population L̂Ri, residential floorspace prices r̂Ri, employment

L̂Fi and commercial floorspace prices r̂Fi. The right-hand side variables Φ̂Ri and Φ̂Fi are changes

in CMA. The coefficients βR = [βLR
, βrR ] and βF = [βLF

, βrF ] reflect both the direct and indirect

effects of improving CMA as it filters through land and labor markets. Finally, the residuals contain

clusters of unobserved location characteristics that are exogenous to economic activity. For residential

outcomes, eRi contains changes in amenities and residential floorspace supplies while for commercial

outcomes, eFi contains changes in productivities and commercial floorspace supplies.22

This system shows that the transit network only matters for equilibrium outcomes through the

two CMA variables. In fact, the change in the entire distribution of economic activity across the city

only depends on the change in CMA and on a structural residual that reflects changing exogenous

location fundamentals (productivities, amenities and floorspace supplies).23 Proposition 1 also shows

that this specification is shared by a broad class of urban models that include housing supply, firm

mobility, capital as a productive input, and leisure in utility. Moreover, it shows that (i) the change

in CMA terms and (ii) the reduced-form elasticities of outcomes to CMA are sufficient statistics for

the relative change in economic activity across the city in response to changes in transit infrastructure.

The overall level of the changes are pinned down by an assumption on population mobility into the

city from the rest of the country, as well as by values for two parameters σ and β that cannot be

estimated from the reduced form. These must be specified in some other way by the researcher, for

example by calibrating them to external values or aggregate moments.

The CMA terms can be easily recovered (to scale) using data on residential populations, employ-

ment, commute costs dij , and the commuting elasticity θ from the following system of equations24

ΦRi =
∑
j

d−θ
ij

LFj

ΦFj
(18)

ΦFj =
∑
i

d−θ
ij

LRi

ΦRi
. (19)

RCMA reflects access to well-paid jobs. It is greater when a location is close (in terms of having low

commute costs) to other locations with high employment, particularly so when these other locations

lack access to workers (increasing the wages that firms there are willing to pay). FCMA reflects

access to workers through the commuting network. It is greater when a location is close to other

locations with high residential populations, particularly so when these other locations lack access to

jobs (lowering the wages that individuals are willing to work for there).

22As discussed in Appendix C.2, there is one first order approximation Φ̃Fi ≈ Φ
θ−1
θ

Fi involved to get this reduced form.
The reduced form this approximation comes from involves ΦRi,ΦFi, Φ̃Fi on the right hand side and holds exactly. Since
ΦFi, Φ̃Fi are very highly correlated in the data (correlation coefficient of 0.98), this is not empirically feasible to implement
and so the approximation is used to generate this simpler reduced form. The coefficients can be mapped between the two,
however, so that the unapproximated version is used to conduct counterfactuals.

23The contents of the residual and reduced form parameters are outlined in Appendix C.7. All contents in the residual
are exogenous to the model, except two equilibrium constants (average utility and total expenditure) that are absorbed into
the regression constant.

24In this single-group model, there is a single commute elasticity θ.
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I now turn to the specific context of Bogotá to visualize the change in CMA and how it differs

from the distance-based measures of treatment effects commonly found in the literature. Figure 1

plots the distribution of changes in CMA induced by the construction of the first two phases of the

system.25 The system increased access to jobs much more in the outskirts of the city, which were far

from the high-employment densities in the center. Firms’ access to workers rose more in the center,

where firms stood to benefit from the increased labor supply along all spokes of the network.

4.2 Measuring CMA

Computing changes in CMA induced by TransMilenio requires values for θ and dij = exp(κtij).

Identifying κ, λ, bm. The mode choice parameters are estimated via maximum likelihood using stan-

dard expressions for choice shares in the nested logit model from Section 3.1 (see Appendix C.3).

The data come from the 2015 Mobility Survey when all modes are available. κ is identified from the

sensitivity of choices to differences in travel time across options, λ is identified from the differen-

tial sensitivity within public modes, and the preference shifters bm are identified from differences in

choice shares conditional on observed travel times. The results are in Panel A of Table 1. The estimate

of κ = 0.011 is very close to the 0.01 reported in Ahlfeldt et. al. (2015). The value λ = 0.157 indicates

a sizable correlation of draws within the public nest. Conditional on travel time, cars are most at-

tractive, followed by buses and TransMilenio. That TransMilenio is least desirable likely reflects high

crowds on the system, and the inconvenience of having to walk between stations and final origins

and destinations. With these parameters, tij0 and tij1 can be obtained from (2) and (3). However, in

the simple model considered in this section there is no car ownership. As described in Appendix C.4,

average commute times tij are computed by assuming residents become car owners according to a

Bernoulli distribution, with probability equal to the share of car owners in Bogotá.

Identifying θ. As shown in Appendix C.4, the special case of the model yields a simple gravity

equation that identifies the parameter cluster θκ from the sensitivity of the change in commute flows

to the change in commute times between any two locations, controlling for origin and destination

fixed effects. Estimating this relationship via PPML to account for zeros in the data yields a value of

θ = 3.398 in Panel B of Table 1, similar to existing estimates (Monte et. al. 2018; Heblich et. al. 2020).

I use this as the baseline value, but use alternative values in robustness checks (see Appendix C.4).

4.3 Empirical Results

Identifying TransMilenio’s Reduced Form Effect on Economic Activity. The regressions (16) and

(17) may be biased if Bogotá’s government chose routes in a way that targeted neighborhoods with

differential trends in unobserved characteristics (such as if trying to stimulate lagging regions or to

25The figure plots the change in CMA holding population and employment fixed at their initial level in 1993 and 1990
respectively and changing only commute costs. This isolates the change due only to TransMilenio (discussed in Section
4.3). FCMA increases toward the center-North due to the high density of (low-skilled) workers in the South.
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support thriving ones). Instead of leaning on a single approach, I exploit a variety of TransMilenio’s

institutional features to establish its causal impact on Bogotá’s structure.

First, I include a rich set of controls, including locality fixed effects to (partially) control for

changes in unobservables. Second, I use variation in CMA induced by changes in the network more

than 1.5km from a location, which is less likely to be correlated with changes in surrounding unob-

servables. Third, I condition on distance to closest TransMilenio station to assess whether the effects

are driven by changes in accessibility rather than by other station features (e.g. changes in foot traf-

fic, pollution or complementary infrastructure). Fourth, I digitize four different historical plans for

Bogotá’s transit network and run specifications including both the realized change in CMA and the

change induced by these (hypothetical) planned networks. The coefficients on the planned CMA

variables can be interpreted as a placebo check that the planned-but-unbuilt locations do not grow

differentially in the absence of new transit. The stability of the coefficients on the realized CMA

variables addresses any omitted variable bias (not captured by the controls) that can arise from a

location’s non-random exposure to transport infrastructure (Borusyak and Hull 2021). Fifth, I ex-

ploit TransMilenio’s staggered rollout across three phases by using event studies and falsification

tests which assess whether there is growth in outcomes prior to line openings. Sixth, I construct

cost-shifting instruments to predict TransMilenio’s routes based on a historical tram network and on

engineering estimates of the cost to build BRT on different types of land.

An additional challenge is that changes in CMA contain population and employment in both

periods. Since productivity and amenity shocks that determine residential population and employ-

ment are contained in the error terms, they will be mechanically correlated with changes in CMA.

I thus construct versions of the change in CMA by solving (18) and (19) while holding population

and employment fixed at their initial levels, allowing only commute costs to change, and use these

throughout the empirical analysis. This isolates the variation in CMA due only to changing commute

costs through TransMilenio’s construction. After solving for the CMA terms, I construct the change

in CMA for a given location by excluding the location itself in the summation. This addresses the

possibility that changes in unobservables may be correlated with a location’s initial level of economic

activity. The main specifications use these CMA measures as regressors, but later in this section I use

these to instrument for the “realized” change in CMA.

Main Specification. Table 2 presents the baseline results. Each entry corresponds to the coeffi-

cient from a regression of the change in each outcome on the change in RCMA or FCMA in each

census tract. Since the data do not all line up, each specification relies on changes over different pe-

riods. However, the changes in CMA are always measured using changes in commute times due to

TransMilenio routes constructed between the two periods over which the outcome is measured.26 Es-

26In population regressions, the outcome is the log change in residential population between 1993 and 2018. The change
in CMA is that induced by all three phases of TransMilenio, holding residential population and employment fixed at their
levels in 1993 and 1990 respectively. In land market regressions, outcomes are log changes between 2018 and 2000 and the
change in CMA is that induced by all three phases holding residential population and employment fixed at their levels in
2000 (population in 2000 is a linear interpolation from the 1993 and 2005 census; employment is from the 2000 CCB data).
Establishment regressions regress changes between 2000 and 2015 from the CCB data against the same CMA measures
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tablishment regressions are weighted by the share of establishments in 2000 in each tract to increase

precision.27 Since some establishment results are noisy, I include the share of floorspace used for

commercial purposes as an outcome to provide supplemental evidence for TransMilenio’s impact on

the reallocation of employment.28

Column (1) includes controls for locality fixed effects, basic tract characteristics, and log distance

to CBD interacted with region dummies.29 Changes in CMA due to TransMilenio have strong, pos-

itive impacts on all outcomes. These relationships remain mostly stable as more controls are added

in columns (2) and (3), sometimes becoming sharper. The exception is log establishments in the final

row, whose coefficient falls by a third with the full set of controls. I consider column (3) to be the

baseline specification continued in later tables, as it includes the full set of controls.

Column (4) excludes tracts that are closer than 500m from an endpoint of a TransMilenio route

(a “portal”) or the CBD. The intent of the government was to connect outlying neighborhoods with

the CBD, so the location of these portals may have been endogenous to underlying trends in local

economic activity. The coefficients remain largely stable in this subsample of tracts, suggesting that

endogeneity in the locations directly targeted by TransMilenio is not driving the results.

Column (5) uses the change in CMA to locations farther than 1.5km away from a tract. Network

additions at this distance from a tract are less likely to be linked to local trends in unobservables.

The results remain robust and, for the most part, stable. Column (6) assumes users take the quickest

mode of public transit available, and shows the results are robust to alternative forms of aggregation.

Lastly, column (7) conditions on distance to stations to establish that the effects are primarily

driven by changes in accessibility rather than by station features (e.g. changes in foot traffic, pollu-

tion or complementary infrastructure). This finding supports the model’s emphasis on accessibility.

Visualizing the Relationship. Figure 2 plots the non-parametric relationship between residual growth

in outcomes and CMA. The relationship appears approximately log-linear for each outcome, as pre-

dicted by the model. The simple model seems to capture the heterogeneous effects observed in the

data: tracts with large improvements in accessibility experience large growth in outcomes.

Hypothetical Changes in CMA from Historical Network Plans. The location of the TransMilenio

network was not random. The government may have located the network to support or spur existing

local trends in economic activity. To provide additional evidence of TransMilenio’s causal impact, I

leverage four distinct historical plans for a transit network digitized from planning documents.

as the land market regressions. This is preferred to the census employment data since it gives employment 10 years to
respond to TransMilenio. Table 4 uses employment data from the census to examine the impact of TransMilenio lines built
during phase 1 (by 2003) on employment growth between 1990 and 2005.

27Unweighted regressions are presented in Table A.5.
28In the simple model this should not change. An extension in Appendix E.3 allows for floorspace use shares to re-

spond to TransMilenio (with total floorspace supply held constant, as observed in the data), which delivers heterogeneous
elasticities of economic activity to CMA. The model with endogenous housing supply in Appendix C.6 also allows for
endogenous floorspace use shares (via changes in relative supplies for residential and commercial floorspace) and admits
the same reduced form as the baseline model.

29The North is richer and more educated than the West and South, so this allows for differential growth further away
from the city center within each region.
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Since 1980, multiple administrations had worked on proposals for building a subway or metro

system in Bogotá. Four distinct plans for the network were prepared before Mayor Peñalosa agreed

with the proposal by JICA to build a BRT, given that the cost of a subway would have been “ten

times higher than the alternative of articulated buses”. I obtained and digitized the maps for these

four planned networks, shown in Figure A.3.30 I then solve for the predicted change in CMA had

TransMilenio been been built along each of the planned networks, and compute the average change

in log RCMA and FCMA across all four plans.

The baseline specification (column 3 of Table 2) is then extended to include these expected changes

in CMA under the plans as additional regressors. One interpretation of the results is as a placebo

check. If the observed impacts are due to TransMilenio itself rather than to the selection of routes

based on trends in unobservables in adjacent neighborhoods, there should be no impact of these

planned-but-unbuilt networks. A second interpretation is that this controls for the omitted variable

bias that can arise from a location’s non-random exposure to transport infrastructure, as highlighted

by Borusyak and Hull (2021). The idea is that some locations may receive systemically different

changes in accessibility under any network realization. For example, central neighborhoods will

tend to have greater increases in FCMA since they are close to where workers live by virtue of their

central location. Identification requires that these “on average” more exposed locations do not differ

in their trends in unobservables. While any such trends may already be controlled for by the rich

fixed effects and controls used in this paper, controlling for the average change in CMA under these

counterfactual networks conducts the exact “recentering” shown by the authors to remove the omit-

ted variable bias. If the controls already capture any differential trend in unobservables in more “on

average” exposed locations, then the coefficient on the realized CMA terms should be invariant to

the inclusion of the expected change in CMA and the coefficient on the latter should be zero.

Table 3 presents the results. Column (1) repeats the baseline specification, while column (2) adds

the control for the expected change in CMA across the four plans. In each case, the coefficient on the

realized change in CMA due to TransMilenio is invariant to the inclusion of this additional control.

The p-value testing for equality of coefficients on the realized CMA variable across both columns

ranges from 0.24 to 0.96. The coefficient on the planned CMA variable is statistically insignificant

from zero in all specifications. These results suggest two things: first, that the observed impacts of

TransMilenio are unlikely due to pre-existing trends in neighborhoods selected by city planners, and

second, that the existing set of controls does a sufficient job in controlling for any omitted variable

bias that could arise from non-random exposure to the network.

Staggered Station Openings. TransMilenio was opened in three distinct phases during the 2000s

and 2010s.31 This section runs a set of falsification checks to test for changes in outcomes prior to the

30See (“Historia de TransMilenio”) for the quote, and Alcaldía Mayor de Bogotá D.C. (2009) for the network maps. As
discussed in Appendix F.3, I add predicted feeder routes under these networks by placing a 2km radius disk around each
end point of the planned lines connecting the two with 8 “spokes”, and create stops every 250m.

31Phase 1 consisted of 3 lines in 2000, and 1 line each in 2001, 2002 and 2003. Each year consisted of 47%, 26%, 6% and
21% of the stations opened in phase 1, respectively. Phase 2 consisted of 2 lines in 2005 and 1 line in 2006, with each year
accounting for roughly half the stations opened in this phase. Lastly, phase 3 consisted of 2 lines in 2012 and 1 in 2013 with
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opening of stations in later phases. The specification is

∆t,t−ℓ ln yi = βCurrent∆t,t−ℓ lnΦi + βFuture∆t+k,t lnΦi + γ′Xi + εi

The outcome is the growth in a variable, yi, between two periods, t and t−ℓ (e.g. 2006 and 2000). This

is regressed on (i) the change in CMA between t and t−ℓ, (ii) the change in future CMA between t+k

and t (e.g. 2015 and 2006), as well as the same set of controls as the baseline specification. If there is

no growth in outcomes prior to TransMilenio being built, the coefficient βFuture should be zero.

The time periods are chosen to best line up with the available data and the opening of TransMile-

nio lines. Since the openings of phases 1 and 2 are spread out between 2000 and 2006 (with every

year except 2004 experiencing station openings), I focus the analysis on phase 3, which opened in

2012 and 2013. For land market outcomes, the change in outcomes is measured between 2008 and

2000. The right-hand side variables include CMA growth due to (i) phases 1 and 2 of the system

open by 2006 (to identify βCurrent) and (ii) phase 3 of the system open by 2013 (to identify βFuture).

While prices may experience some anticipation effects, plans for phase 3 were mired by uncertainty

and delays, with construction only beginning in late 2009. For residential population, the change is

measured between the 1993 and 2005 censuses. The right-hand side variables include CMA growth

due to phase 1 (open by 2003, with most stations opening by 2001), as well as the change in CMA due

to phases 2 and 3. Lastly, for employment, I turn to the measures from the economic census rather

than the CCB data. While the latter is available only in 2000 and 2015 (bookending the entire net-

work construction), the economic census is available in 1990 and 2005. This permits me to separately

examine the impacts of changes in CMA due to phase 1 versus phases 2 and 3, similar to residential

population.32

In Table 4, Panel A presents the results for residential population and residential floorspace prices.

Odd columns repeat the baseline specification but with outcomes measured over this different period

(e.g. 1993 to 2005 for residential population, compared to 1993 to 2018 in the baseline results). The

positive relationships remain significant, although the point estimates are somewhat attenuated. This

might be expected given that there is less time for outcomes to respond to the change in CMA than in

the baseline specification. Even columns then run the specification above. They maintain a significant

relationship between outcome growth and CMA growth due to lines constructed over the period, but

an insignificant impact due to accessibility from future lines. While insignificant, these estimates of

βFuture can be noisy. Panel B finds similar patterns for commercial land market outcomes.

Panel C presents the impact on total and formal employment from the economic census.33 In the

odd columns, which regress on realized changes in CMA, I document positive but noisy coefficients

(p-values of 0.123 and 0.118). These estimates are larger than the baseline estimates using the CCB

data, but the difference is statistically insignificant given the imprecision of the estimates. The even

2012 representing 84% of the openings
32The downside of the economic census data is that there is less time for employment to adjust: on average across

lines opening during phase 1, there are just under 4 years between the opening year and the 2005 economic census. This
compares to 10.5 years between the average opening year and the 2015 CCB.

33Formal employment is defined as employment in establishments with 5 or more workers.
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columns add in future CMA growth, which is statistically insignificant in both cases.

Floorspace Price Event Study. I leverage the annual cadastral data to examine more granular house

price dynamics prior to the opening of TransMilenio’s third phase. I run regressions of the form

ln rRit = αi + γℓ(i)t +
τ=6∑
τ=−8

βτ∆12,06 lnΦRi + δ′tXi + εit,

where αi are tract fixed effects, γℓ(i)t are locality-year fixed effects, and δ′tXi is a set of controls with

time-varying coefficients. The controls include those from the baseline specification, but add the

change in CMA due to the first two phases of the system to capture the impact of changes that these

earlier lines had on house prices that is correlated with the change due to phase 3. The regression

is weighted by initial floorspace price in 2000 to improve precision. The βτ coefficients capture the

response of residential floorspace prices in a tract τ years from the third phase lines opening to the

change in CMA due to the lines that open during this phase.

Figure 3 plots the event study coefficients. Reassuringly, the change in CMA induced by the net-

work expansion in phase 3 has no impact on floorspace price growth to the line openings. It is not

clear ex ante that this would be the case. Prices could rise due to anticipatory effects as expectations

around whether and where the line would open firm up. Alternatively they could fall due to the

disamenities surrounding the construction from late 2009 through 2012. In fact, consistent with this

possibility, there is a mild decrease in house prices in tracts that experienced a larger growth in ac-

cessibility due to phase 3 in the two or three years prior to opening. The year before the lines open,

the responsiveness of prices to CMA jumps approximately 0.4 log points. This is potentially due to

anticipation effects as the opening of the third phase became certain.34 This effect is stable until two

years after opening, after which the elasticity rises 1 log point until six years after opening.

While the difference between the short- and medium-run effects in this event study may reflect

the multiplier effect due to the reallocation of population and employment to treated areas, it is im-

portant to note that (part of) this could also be due to the way the data is constructed. As described in

Appendix F, part of the annual change in prices in the cadastral database is based on inflating prior

years’ values. Primary data are collected by the cadastral office to fully reassess properties—based

on collecting information on properties for sale, making offers to elicit true sales values, and having

in person visits by professional assessors—but this happens fairly infrequently (around three times

over the period in question). This motivates the focus on long-run impacts in the rest of the paper.

Instrumental Variables to Predict TransMilenio’s Placement. Lastly, I construct two cost-shifting

instruments for TransMilenio routes. These in turn imply two instruments for the change in CMA.35

34Corruption cases surrounding the construction of the third phase had added to construction delays, which may have
brought more uncertainty than usual to whether and when the lines would actually open.

35Additional details can be found in Appendix F.3. To compute the instruments, I first calculate the commute times had
the system been built along each instrument. Plugging these into (18) and (19) and continuing to hold population and
employment fixed at their initial level, I obtain the predicted CMA had TransMilenio been built along these routes. My
instrument for the change in CMA is then the difference between this predicted CMA under TransMilenio and its value
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The first takes as given the government’s overall strategy of connecting portals at the edge of the

city with the CBD, excludes those areas from the analysis, and constructs the routes that would have

been built if the sole aim had been to minimize costs. This is done by using engineering estimates to

compute the cost to build BRT in each parcel of land in Bogotá based on its land use in 1980. This is a

valid instrument when these least-cost routes predict TransMilenio’s placement but are uncorrelated

with trends in unobserved amenities and productivities (conditional on controls).

The second instrument exploits the location of a tram system that opened in 1884, which was last

extended in 1921 and stopped operating in 1951. I extend the 1921 lines to the present edge of the

city to improve predictive fit, given the city’s substantial expansion over the period. The tram was

built along wide arterial roads, which are cheaper to convert to BRT than narrow ones. The tram may

have had persistent direct effects on trends in unobservables that lasted well after its construction,

which I capture by including historical controls. Conditional on these historical variables, the tram

routes should be uncorrelated with changes in productivities and amenities between 2000 and 2012

to the extent that these were unanticipated by city planners in 1921.

The identification assumption is that the instruments have only an indirect effect on outcome

growth through the predicted change in CMA. One concern is that features that make a location

cheaper to build BRT, such as proximity to a main road, can have direct effects on outcomes. A key

advantage of my approach is that I can control for distance to these features (distance to the tram,

distance to main roads) and use only residual variation in predicted CMA growth for identification.

Table 5 presents the results. Column 1 reproduces the baseline results for reference. Column 2

shows the results are very similar when instrumenting the realized change in CMA (allowing resi-

dence and employment to change across periods and summing over all locations) with the measure

from the baseline specification. Columns 3 and 4 instrument the realized change in CMA using the

average change across the tram and least-cost path instruments, using either all tracts except the tract

itself (column 3) or only tracts 1.5km away (column 4). The coefficients are mostly stable across these

specifications, with the exception of residential floorspace prices which roughly double when moving

to the final column. The population and commercial floorspace price coefficients are imprecise, but

sharpen in the last column. Taken together, these specifications support the impression from the anal-

yses above—that changes in CMA due to TransMilenio seem unrelated to trends in unobservables

conditional on the rich set of controls. Given the broad stability of the estimates across specifications,

I use the coefficients from the baseline specification in the next section but explore the robustness of

the results to using the elasticities from the other columns in this table (see Table A.2).

Robustness Checks and Additional Results. Appendix G.6 presents robustness of these results to

alternative i) methods of aggregating times; ii) commute elasticities; iii) clustering of standard errors;

iv) additional controls and sample selection criterion and v) weighting procedures. Appendix G.4

provides evidence that TransMilenio increased wages but also led to a sorting response where the

high-skilled moved into neighborhoods with improved market access. This is consistent with the

in the initial period without the system. Historical and least cost instruments are often used in the literature (Baum-Snow
2007; Duranton and Turner 2012; Faber 2014, Alder 2019).
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model’s Stone-Geary preferences, since the rich are more likely to move into appreciating neighbor-

hoods, given that they spend a smaller fraction of their income on housing.

4.4 Aggregate Effects from Reduced Form Sufficient Statistics

Table 6 measures TransMilenio’s aggregate effects by using the estimated reduced-form elasticities to

implement the sufficient statistics approach outlined in Proposition 1.

First Order vs General Equilibrium Welfare Impacts. The standard approach to evaluate the gains

from transit infrastructure is based on the “value of travel time savings” (e.g. Small and Verhoef

2007). Despite the rich channels captured in the general equilibrium model, Proposition 2 in Ap-

pendix C.5 shows that when the equilibrium is efficient, an application of the envelope theorem

implies that this is precisely the first order welfare impact from a change in infrastructure.

Panel A of Table 6 simulates what Bogotá would have looked like in 2018 without TransMilenio,

and then adds it back in under the different approaches.36 The first column reports TransMilenio’s

gains under the first order approximation or VTTS approach from Proposition 2. This delivers a wel-

fare increase of 1.26%, accruing solely through time savings. The second column shows the welfare

gains using the full model from Proposition 1 and the estimated elasticities. These deliver a much

larger gain of 2.34%. The VTTS thus accounts for only 54% of the total welfare gains, yielding one

of the paper’s central results—that equilibrium effects matter for valuing the gains from new transit

infrastructure in cities. Confidence intervals for these main welfare effect are reported from a boot-

strap procedure that accounts for the uncertainty in the model’s parameter estimates (see Appendix

C.9 for details). While there is meaningful uncertainty surrounding these estimates, I can reject the

null that the fraction of welfare gains accounted for by the VTTS is not less than one (p-value of 0.04).

The difference between the equilibrium and the first order welfare effects could be due either to the

size of the shock (since the approximation may perform poorly for large shocks) or deviation from

efficiency (due to amenity and productivity externalities). The final column shows that when exter-

nalities are turned off, the VTTS explains a larger portion of the equilibrium effects. The size of the

shock explains about one third of the 46% gap between the VTTS and the general equilibrium welfare

effect, with the externalities accounting for the remaining two thirds.

Aggregate Effects. Panel B presents TransMilenio’s impact on aggregate outcomes using the results

from Proposition 1.37 Doing so requires values for α, β and σ in addition to the CMA elasticities. I

estimate the 1 − α = 0.206 by computing the share of floorspace in total costs across establishments

36I refer to the “2018 equilibrium” as the post-TransMilenio equilibrium. Population data and land market data come
from 2018, employment data from 2015, land market data come from 2018, and the TransMilenio network includes all
phases. Since there may be multiple equilibrium in the presence of externalities, the selection rule used is to start the
algorithm from the observed equilibrium when solving for counterfactual equilibria. This can be rationalized through
path dependence in a dynamic model of a city.

37The percentage change in each variable under the counterfactual without the TransMilenio network are reported, i.e.
100× (XNoTM

2015 /X2015 − 1) for any variable X2015. Numbers may therefore differ from Panel A which inverts the ordering
by using the equilibrium without TransMilenio as the base. Table A.2 presents robustness of the welfare results in row 1 to
alternative parameter values.
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in each one digit non-agricultural industry, and averaging these by the sectoral employment shares

in Bogotá.38 I estimate 1−β = 0.274 from the average expenditure share of housing in Bogotá. Lastly

I set σ = 6 close to median estimates from Feenstra et. al. (2018), but vary this in robustness checks.

The first column presents the closed city results from the model developed above. The second

column presents results from an extension outlined in Appendix E.1, which allows for an upward-

sloping supply of migrants into the city from the rest of the country. There are large aggregate im-

pacts on welfare and city output under either mobility assumption. Without migration into Bogotá,

GDP and welfare rise by 2.98% and 2.21% respetively, with a slight fall in the level of floorspace

prices.39 With migration, the welfare gain falls to 0.6% since the increase in population of 9.51% bid

up floorspace values by 5.28%. GDP rises by 12.71%, but this is mostly due to population growth:

GDP per capita rises by 5.67%. The final two rows show that TransMilenio can account for between

2.96% and 13.36% of Bogotá’s GDP growth from 2000 to 2016, and up to 34.9% of observed popula-

tion growth. TransMilenio’s effects are quantitatively important, but not implausibly large. The third

row shows that it was also a profitable investment for the city, leading to an increase of at least 2.5%

in the steady state level of GDP net of construction and operating costs (see Appendix F.4 for details).

Incorporating Congestion. While speeds for cars and other types of buses did not change on routes

adjacent to TransMilenio (see Appendix G), the BRT could have had aggregate effects on road speeds

that do not appear in a difference-in-difference specification. Appendix E.2 extends the baseline

model to gauge the impact of the BRT in the presence of congestion. The extension blends elements

from Allen and Arkolakis (2021) and Gaduh et. al. (2022). The “economic module” of the model

is unchanged: the same system of equations governs the response of economic activity to a change

in commute times. However, a new “traffic module” is added that allows the change in commute

times to depend on both new physical infrastructure and any changes in commuting patterns via

congestion. The result is one combined system of equations where the change in economic activity

and commute times are jointly determined in response to new infrastructure.

The results are shown in Panel C of Table 6, using the congestion elasticity of 0.06 estimated for

Bogotá by Akbar and Duranton (2017). The first two rows show TransMilenio’s welfare effect in the

model with and without congestion.40 Allowing for congestion leads to a larger welfare gain: as some

commuters substitute away from cars onto the BRT, roads become less congested and driving times

fall. This effect is small, however, with a welfare increase that is only 0.55% larger than without con-

gestion. The last row assesses the welfare impact had the TransMilenio lanes been used to add new

car instead of BRT lanes. The welfare effects are tiny in comparison: the welfare change would have

been only 0.6% of the gains caused by TransMilenio. Overall, these results suggest that the baseline

welfare effects provide a lower bound of the BRT system’s impact in the presence of congestion.

38The data on cost shares comes from the Encuesta Anual Manufacturera, Encuesta Anual de Servicios and the Encuesta
Anual de Comercio in 2010. The sectoral employment shares are averages from 2000-2015 from the GEIH and ECH.

39It is typical to have little change in the overall level of house prices in closed city models with fixed housing supply
since the supply of housing and overall population is fixed.

40The welfare effect in this model with the congestion elasticity set to zero differs from the baseline model, due to the
different formulation of constructing commute costs.
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5 Distributional Effects

While the sufficient statistics approach from the previous section can speak to the BRT’s aggregate

effects, it is silent on the distribution of these impacts across worker groups. This section therefore

estimates the full model from Section 3 to answer this question.41

5.1 Parameter Estimation

5.1.1 Parameters Estimated without Solving the Model

Externally Calibrated Parameters {σ, σD} I set the elasticity of substitution between labor skill groups

to σ = 1/0.7 based on the review in Card (2009), and σD = 6 as described in Section 4.4.42

Share Parameters {αs, β, αsg} I estimate 1 − αs = 0.206 as described in Section 4.4 using data on

the share of floorspace in total production costs, and set this to be equal across industries. I estimate

1 − β = 0.24 to match Bogotá’s long-run housing expenditure share.43 As described in Appendix

D.2, the labor shares αsg are calibrated to match the relative wage bill for college-educated workers

in each industry.

Commute Costs and Elasticity The estimates κ, λ, bm were provided in Table 1, delivering com-

mute times tija under each car ownership status from (2) and (3). The commute elasticities θg can be

estimated by taking logs and first differences of the expression for commute flows (4) to yield

∆ lnπj|iag = γiag + δjg − θgκ∆tija + εijag,

where γiag and δjg are fixed effects and εijag is an unobserved component of commute costs. Given

a value of κ, θg is identified off the sensitivity of changes in commute flows to changes in commute

times induced by TransMilenio for each group.44

Table 7 presents the results. Across all specifications, high-skilled workers are found to have a

lower θg (i.e. a higher dispersion of productivity shocks across locations) making their commute

choices less sensitive to commute times. The overall magnitude and fact that more educated workers

are estimated to have a greater dispersion of match-productivities line up with existing estimates (e.g.

Lee 2020; Hsieh et. al. 2019; Galle et. al. 2022). Since the moment conditions in the following section

use the instruments for TransMilenio’s placement, I use the IV estimates in column 2 as preferred

estimates, which yield values of θH = 2.655 and θL = 3.98. I explore the robustness of the results to

using the OLS or PPML estimates in Table A.4.

41A list of all parameters and sources of variation used to identify them is provided in Appendix A.3.
42Estimating σ within the model would require a shock to relative labor supply and wage data by location of employment

across space to measure the response in relative wages. Since the latter are not available, I calibrate σ instead and conduct
robustness to both σ and σD in Table A.4.

43See the Engel curves presented in Appendix G.
44Another option here would have been to allow κ to vary by group. While this wouldn’t matter for this particular

moment of the sensitivity of commute flows to commute times, allowing for this possibility in estimating the mode choice
model led to κH = 0.0126 (0.0062) and κL = 0.0113 (0.0054). Since these are statistically indistinguishable from each other
(p-value for a test of equality of 0.22), I use the assumption of common κ across groups.
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5.1.2 Parameters Estimated Solving the Full Model

It remains to estimate the parameters {h̄, pa, Tg, ηg, µA, µU,g}. Appendix D.3 shows how, given prior

parameter estimates, there is a vector {h̄, pa, Tg} that matches the average expenditure share on hous-

ing, the average expenditure on cars, and the college wage premium, respectively.

The residential supply elasticity ηg and the spillover parameters µA, µU,g are estimated via GMM.

The intuition for identification is very similar to that of the sufficient statistics approach of Section

4. TransMilenio provides a shock to the attractiveness of each residential neighborhood through in-

creased RCMA. The response of residential inflows to this shock identifies the residential supply

elasticity. The response of model-inferred amenities to the resultant change in neighborhood compo-

sition identifies the amenity spillover. TransMilenio also provides a shock to the supply of workers

commuting to each employment location through increased FCMA. The response of model-inferred

productivity to this change in employment identifies the productivity spillover.

Amenities Moments Taking logs of the expression for resident supply (6) delivers

∆ lnLRiag = ηg∆ lnViag + ηgµU,g∆ ln
LRiH

LRi
+ γℓ,g + γ′R,gControlsi +∆ ln ϵRiag (20)

where ∆ lnViag ≡ ∆ ln ỹiag − (1−β)∆ ln rRi, γℓg are locality-group fixed effects, and Controlsi denote

tract characteristics (that can have separate effects by group) used to partially control for changes in

unobserved amenities. ∆ ln ϵRiag reflects residual variation in unobserved amenity growth.

The residential supply elasticity ηg is identified off the responsiveness of residential populations

to exogenous variation in the common utility from living in a location ∆ lnViag. This comes from my

instruments for RCMA, which I use to construct predicted change in net income using the instrument

for TransMilenio to generate expected income in the post-period.45 Let ∆ ln Φ̃IV
Riag denote the expected

growth in net income growth averaged across the LCP and Tram instruments (as in Table 5).

Identification of the spillovers µU,g requires exogenous variation in a neighborhood’s college

share. I use two instruments to this end. First, tracts that experience a greater growth in CMA to

high-skilled jobs relative to low-skilled jobs should experience a larger increase in the share of col-

lege residents. This is captured by ZDiff,i = ∆ ln ¯̃ΦIV
RiH − ∆ ln ¯̃ΦIV

RiL where X̄i =
∑

aXia. Second,

tracts with expensive housing where CMA improves should see a greater rise in the college share.

This comes directly from log-linearizing the expression for residential populations (6). Intuitively,

poor low-skilled residents are less willing to pay for increased access to jobs in expensive neighbor-

hoods due to their greater expenditure on housing.46 I capture this by interacting the change for

45Letting t − 1 and t reference the pre- and post-TM periods, adjusted RCMA is Φ̃Riag,t−1 ≡ Tg,t−1ΦRiag,t−1
1/θg −

pa,t−1a + πt−1 and Φ̃IV
Riag,t ≡ Tg,t(Φ

IV
Riag,t)

1/θg − pa,ta + πt. The change is simply ∆ln Φ̃IV,k
Riag = ln Φ̃IV,k

Riag,t − ln Φ̃Riag,t−1

for k ∈ {LCP, Tram}. Then ∆ln Φ̃IV
Riag = Ek

[
∆ln Φ̃IV,k

Riag

]
.

46Log-linearizing the expression for residential populations (6) yields

∆lnLRiag ≈ µL
iag

ηg
θg

∆lnΦRiag − ηg(1− β + µR
iag)∆ ln rRi + ϵiag

where ϵiag ≡ aµa
iag∆ln pa+µπ

iag∆lnπ+ηg∆lnuiag . Here µL
iag ≡ TgΦ

1/θg
Ri /ỹiag and µR

iag = rRih̄/ỹiag are the share of labor
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high-skilled residents with the house price in the initial period ZRents,i = ∆ ln ¯̃ΦIV
RiH × ln r2000Ri .47

The moment conditions used to identify ηg and µU,g are therefore48

E [∆ ln ϵRiagZRiag] = 0, ZRiag ∈
{
∆ ln Φ̃IV

Riag ZDiff,i ZRents,i

}
.

Productivity Moments Composite productivity Ajs ∝ Wαs
js r

1−αs
Fj X

1/(σD−1)
js is the residual that en-

sures the model definition for sales holds. As shown in Proposition 3 in Appendix D.1, this can be

recovered (to scale) using data on employment, residence, floorspace prices and commute costs. The

model infers high productivity in locations where employment is high (reflected through high sales)

relative to the observed price of commercial floorspace and the accessibility to workers through the

commuting network (which determines wages). Taking logs of (14) and including a set of control

variables to (partially) capture changing fundamentals yields

∆ lnAjs = µA∆ ln L̃Fj + γℓ + γ′FControlsj +∆ ln ϵFjs

where ∆ ln ϵFjs reflects residual variation in unobserved productivity growth.

The agglomeration elasticity is identified from the extent to which model-implied composite pro-

ductivity depends on employment. Since employment will be correlated with unobserved compo-

nents that make locations more productive, I use the instruments for FCMA growth as a labor supply

shock. The moment conditions used to identify µA are therefore

E [∆ ln ϵFisZFig] = 0, ZFig ∈
{
∆ ln Φ̄IV

F iL ∆ ln Φ̄IV
F iH

}
.

Both sets of moments are stacked into a system of moment conditions which is estimated jointly

in a single GMM estimation. I estimate standard errors via a block-bootstrap procedure, resampling

at the tract-level to allow for arbitrary within-tract correlation in unobservables.49

GMM Results Table 8 presents the main results. The productivity externality of 0.242 is slightly

larger than existing estimates, although it is slightly noisy (p-value of 0.058), and thus contains

smaller values within its confidence intervals. This is also one of the first estimates outside of a

developed country setting. The residential population elasticity is slightly larger for the high-skilled

than the low-skilled. The spillovers for residential amenities are 0.730 and 1.002 for low- and high-

skilled workers. While both groups value living near high-types, the college educated value it most.

income and fixed housing expenditure of total net income. Note that µR
iag is greater for poor individuals since they spend a

greater fraction of income on housing. Thus, poor low-skilled workers are more sensitive to house price appreciation and
are less willing to pay for improved CMA than the high-skilled.

47Controls for initial house prices are included to allow this characteristic to have its own impact on population growth;
controls from the reduced form results are included and reported in Table 8.

48Orthogonality conditions with each control variable are also included. The time periods used for pre- and post-periods
for each variable are the same as in the previous section, and use the full 2013 TransMilenio network.

49Bootstrapping is needed since units of observation vary across moment conditions, rendering the standard asymptotic
variance formulas inapplicable. See Appendix D.4 for a benchmark of the amenity spillover estimates to Diamond (2016).
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Model Validation The model’s fit of two non-targeted moments provides additional confidence in

its results. First, Figure A.4 plots the observed change in the share of floorspace used for residential

purposes against that predicted by the model. While the two correlate well, the correct test of the

model is not that the correlation or R2 is high but rather that the regression of the observed on the

model-predicted changes has a slope of one.50 The slope of this regression is 1.598 (0.822), which is

statistically indistinguishable from one (p-value 0.47). Second, the model predicts that changes in in-

come are related to RCMA through d ln ȳi = 1
θd lnΦRi with elasticity 1/θ. This regression is reported

in column (3) of Table A.16. The coefficient of 0.522 (0.224) is statistically indistinguishable from 1/θ

after plugging in the estimate of θ = 3.398 (p-value 0.31).

5.2 Results

Panel A of Table 9 presents the main result: welfare inequality increases by 0.55% as a result of

TransMilenio. It should be noted that the confidence intervals convey uncertainty in this estimate,

and the test of whether the high-skill gain more than the low-skill only has a p-value of 0.15. With

this caveat in mind, I turn understanding the source of this result.

Why would the high-skilled benefit the most? Panel B decomposes the welfare gains, starting

with a simplified case of the model and slowly adding its ingredients to isolate each one’s impact.

The first row assumes workers share the same (average) value for η and θ and are perfect substi-

tutes in production. This model is similar to the simple model used in Section 4.4 since it abstracts

from heterogeneity across workers. Reassuringly, the average welfare effect of 2.19% is very close to

the 2.335% reported from the sufficient statistics approach in Table 6. Low-skilled workers benefit the

most, with inequality falling by 0.37%.

The second row allows workers to differ in their commuting elasticities. Recall that the high-

skilled have a lower commute elasticity. This shifts the gains towards the high-skilled, with inequality

now falling by 0.16%. A lower commuting elasticity tends to increase the incidence of high commute

costs, since workers have very sticky preferences for workplace locations and are less able to sub-

stitute away to less costly options when transit is slow. The third row allows the residential choice

parameters to equal their estimated values, with a modest reduction in the fall in inequality.

The last thing that changes as one moves to the result from the full model in Panel A is that

workers are imperfect substitutes in production. Intuitively, the average welfare effect falls. For

example, a large inflow of low-skilled workers will increase the supply of the labor bundle less than

when both types are perfect substitutes. However, this also causes the sign of the impact on inequality

to switch, with welfare inequality rising by 0.55%. This occurs for two reasons. First, high-skilled

workers are now partially shielded from the reduction in wages due to the large labor supply shift

of low-skilled workers who use public transit since they are no longer perfect substitutes. Second,

it now matters whether each skill group is connected to locations where demand for their skill is

50Other shocks orthogonal to the model may cause the correlation or R2 between observed and model-predicted changes
to fall. The model is trying to capture the counterfactual of how activity would have changed if the only shock had been
the change in infrastructure. For discussion see Adao, Costinot and Donaldson (2023).
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highest. For the geography of Bogotá and TransMilenio, this tends to benefit the high-skilled who are

concentrated in the city’s north which TransMilenio connected with the high skill-intensive industries

in the center and center-north. Residence and employment for the low-skilled is more dispersed, so

TransMilenio connected a smaller fraction of these workers with high-wage locations.

Overall, these results suggest that the incidence of improving public transit depends not only on

how much each group uses it, but also on how willing each group is to bear high commute costs

to work at a particular location, whether the system connects worker groups with their high-wage

locations and the general equilibrium response of wages and house prices. In the context of Bogotá’s

TransMilenio, these reallocation and equilibrium effects are large enough to reverse the effects on

inequality, which ultimately rose 0.55% as a result of the BRT.

Domestic Services and Alternative Home Ownership Assumptions. From 2000-2014, 7.3% of non-

college educated Bogotanos worked as domestic helpers while almost no college-educated workers

did. On the one hand, the model may underestimate the gains to the low-skilled by ignoring the fact

that TransMilenio improved access to domestic services jobs in the homes of the college educated

in the North. On the other hand, the high-skilled also benefitted from this increased labor supply,

which lowered the cost of hiring domestic workers. Appendix E.5 extends the model to incorporate

employment in domestic services, and Panel C of Table 9 presents the results. Overall, these two

effects tend to balance out—the increase in inequality is very similar to the main model in Panel A.

The last two rows of Panel C incorporate different assumptions over home ownership as outlined in

Appendix E.6, with the results fairly invariant across the alternatives.51

5.3 Policy Counterfactuals

Impact of Alternative Networks. The first panel of Table 10 reports the impact on welfare, inequality,

and output had the network been built without lines A and H, which connect the city’s north and

south with the CBD. The line to the south has a bigger effect on welfare (which would have been 0.3%

lower without it), which is logical given the higher population density of poor and middle income

workers there. For the same reason, the line to the north has the greater effect on inequality (which

would have risen by 0.2% less without it). Intuitively, each group benefits relatively more from lines

that improve accessibility from where they live.

The welfare gains from these trunk lines are exceeded by the benefits from the feeder bus network

(as welfare would have been 0.94% lower without it). These buses connect outlying areas with portals

and run on existing roadways. By providing complementary services that reach residents in outlying

but dense residential areas, they can solve the last-mile problem of traveling between stations and

final destinations. Given the low cost of feeder systems compared to the capital-intense BRT, these

results suggest a high return to policy makers considering cheap, complementary services to increase

access to mass rapid transit infrastructure.

51Table A.4 reports robustness of the main results to (i) allowing migration into the city, (ii) a larger elasticity of substitu-
tion between labor types, (iii) alternative employment data, (iv) alternative elasticities of demand, (v) alternative commut-
ing elasticities and (iv) a decision over where to live and work.
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A key trade-off policymakers face is whether to build fast rail, medium-speed BRT, or slower bus

networks. The speed of such networks could affect the distributional consequences, for example, if

the high-skilled were especially willing to pay to live near faster networks and priced out poorer

residents. The last row runs a counterfactual that increases TransMilenio’s speed to 35 km/h, close to

the average operating speed of London’s Underground. The increase in both welfare and inequality

would have been much higher, confirming the intuition that faster systems benefit the rich relatively

more. However, Figure A.5 compares the change in the college share near stations under this coun-

terfactual. While it does increase in tracts closer than 500m from a station, the increase is very mild.

This suggests the channels mentioned above, rather than gentrification, are responsible for why the

rich benefit more from faster transit.

Land Value Capture One main criticism of TransMilenio was that its construction was not accom-

panied by an adjustment of zoning laws to allow housing supply to respond where it was needed.

Appendix G shows that housing supply did not respond to the system’s construction, consistent with

other evidence on the restrictive role played by land use regulation (Cervero et. al. 2013). Many cities,

such as Hong Kong and Tokyo, have had success in implementing LVC schemes which increase per-

mitted densities around new stations but charge developers for the right to build there (Hong et.

al. 2015). These policies increase housing supply and raise revenue to finance the infrastructure’s

construction.

I now evaluate the impact of TransMilenio had housing supply responded to the opening of the

system. As a benchmark, I allow housing supply to adjust to the increase in floorspace values follow-

ing a log-linear supply curve. Given that I do not observe a housing supply response in Bogotá that

would permit me to measure a city-specific housing elasticity, I instead make a conservative choice

and assume the housing supply in Bogotá is the same as that in Oakland, CA, the 6th most inelas-

tic city in the US according to Saiz (2010). I then simulate the effect of two potential LVC schemes.

First, I assume the government sells the rights to developers to increase floorspace by a maximum

of 30% in tracts within 500m of stations, mimicking the “development rights sales” undertaken in

certain Asian, European, and American cities.52 Second, I assume the government sells permits that

allow for the same change in total floorspace, but instead allocates the permitted floorspace changes

according to a location’s predicted change in CMA. Details on this model extension are provided in

Appendix E.4. I compare the two equilibria by first removing TransMilenio (without housing adjust-

ment) and then by adding it back under each housing supply model.

The last two panels of Table 10 present the results. Panel B shows the impacts on welfare. Under

free adjustment, welfare would have been 44.04% higher than it is today. Under the LVC schemes,

welfare would have been 24.47% or 43.82% higher than it is today under the distance- or CMA-based

policies respectively (with similar relative effects on city output). These welfare improvements come

from increasing housing supply where it is demanded the most as a result of new infrastructure,

52See Hong et. al. (2015) and Salon (2014) for further details. The parameters of this counterfactual are motivated by
the example of Nanchang, China, where floor area ratios were increased by a uniform amount within 500m of stations.
Revenues from the scheme covered 20.5% of costs, similar to my results.
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tempering down floorspace price appreciation. The high return to the CMA-based instrument high-

lights how well-targeted zoning adjustments that allocate permits towards where they are needed

most deliver bigger benefits. Panel C shows the fiscal benefits of the LVC schemes. Depending on

how much the city population grows in response to the BRT, the distance-based instrument recoups

4-11% of construction costs, while the CMA-based scheme covers 6-21% of such costs.

These results suggest the potential for large welfare gains to governments pursuing a unified

transit and land use policy. These policies can also be used to finance the construction of public

transit, and targeting zoning adjustments based on where demand for housing will increase the most

delivers the largest benefits.

6 Conclusion

This paper makes three contributions to our understanding of the aggregate and distributional effects

of urban transit systems. First, it develops a sufficient statistics approach to evaluate the aggregate

effects of new transit infrastructure in cities. Second, it shows that these statistics can be measured

from readily available data and estimates them using the variation in accessibility induced by Trans-

Milenio’s construction. Third, it quantifies the welfare gains from the BRT under the equilibrium

model and compares these gains with the VTTS to isolate the importance of reallocation and general

equilibrium effects. Fourth, it estimates a richer model to that nests the sufficient statistics approach

to quantify who the gains are shared between the rich and poor.

The study finds that the quantitative urban model performs well in explaining the adjustment of

economic activity to transit infrastructure, with the log-linear relationships predicted by the model

borne out in the data. The VTTS only account for around 57.5% of the total welfare gain from the new

transit infrastructure. Thus, accounting for equilibrium effects matters for valuing the gains from new

transit infrastructure in cities, and the framework developed in this paper provides a blueprint to do

so. It also finds that the accounting for reallocation and general equilibrium effects acts against the

benefits to poor workers who tend to use transit the most, which in the case of TransMilenio meant

that welfare inequality rose by a mild 0.55%.

The paper also provides two key insights that can inform transit infrastructure policy. The first

is that low-cost “feeder” bus systems that complement mass rapid transit by providing “last-mile”

service for passengers’ easy access to a system’s terminals yield high returns. The second is that the

welfare gains would have been around 40% higher had the the government implemented a more

accommodative zoning policy, and government revenues from an LVC scheme could have raised

a significant portion of construction costs. This underscores the benefits to cities from pursuing a

unified transit and land use policy.
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Tables

Table 1: Mode Choice and Commuting Parameter Estimates

Panel A: Mode Choice

Parameter Estimate

κ 0.012**
(0.006)

bBus -0.085*
(0.051)

bCar 0.853***
(0.291)

bTM -0.212*
(0.108)

λ 0.138**
(0.067)

N 19,510

Panel B: Commute Semi-Elasticity
(Aggregate)

Parameter Estimate

θκ 0.039**
(0.016)

N 710

Note: Panel A shows estimation results from nested logit regression on mode choices from trip-level data from the 2015 Mobility Survey. Controls for hour of
trip departure dummies and dummies for gender and quintiles of the age distribution are included for each mode, which is equivalent to allowing preferences
for each mode to vary by these characteristics. Heteroscedasticity robust standard errors are reported in parentheses. Panel B shows gravity equation estimation
results, estimated via PPML. The outcome is the log number of commuters between each origin and destination locality pair in 1995 or 2015. Fixed effects for
each origin-destination pair, origin-year and destination-year pair are included. Reported coefficient is that on travel time. In both panels, only trips to work
during rush hour (5-8am) by heads of households included. Controls of origin-destination pair characteristics interacted with year dummies include (i) the
average number of crimes per year from 2007-2014, (ii) the average log house price in 2012 and (iii) the share of the trip that takes place along a primary road
along the least-cost routes between origin and destination. Standard errors are clustered at the origin-destination locality. * p < 0.1; ** p < 0.05; *** p < 0.01
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Table 2: Baseline Estimates

(1) (2) (3) (4) (5) (6) (7)

Panel A: Residents
ln(Res Floorspace Price) 0.370** 0.382** 0.384** 0.342* 0.379*** 0.228** 0.365*

(0.179) (0.172) (0.169) (0.174) (0.147) (0.090) (0.202)
N 2,201 2,201 2,201 2,166 2,199 2,201 2,201
R2 0.41 0.43 0.43 0.43 0.43 0.43 0.43

ln(Res Population) 0.722** 0.648* 0.746** 0.630* 0.683** 0.318* 1.086***
(0.337) (0.337) (0.331) (0.334) (0.293) (0.174) (0.388)

N 2,256 2,256 2,256 2,219 2,255 2,254 2,256
R2 0.34 0.35 0.37 0.37 0.37 0.37 0.37

Panel B: Firms
ln(Comm Floorspace Price) 0.526** 0.540** 0.621** 0.580** 0.514** 0.362*** 0.718**

(0.253) (0.251) (0.248) (0.249) (0.214) (0.135) (0.301)
N 2,080 2,080 2,080 2,047 2,089 2,083 2,080
R2 0.09 0.10 0.11 0.11 0.11 0.11 0.11

Comm Floorspace Share 0.290*** 0.297*** 0.291*** 0.284*** 0.197*** 0.151*** 0.286***
(0.087) (0.088) (0.088) (0.088) (0.072) (0.047) (0.101)

N 2,230 2,230 2,230 2,195 2,239 2,233 2,230
R2 0.14 0.15 0.15 0.15 0.15 0.15 0.15

ln(Establishments) 2.101*** 1.787** 1.329* 1.283* 1.414** 0.924** 1.414
(0.735) (0.761) (0.751) (0.757) (0.642) (0.395) (0.888)

N 2,028 2,028 2,028 1,995 2,028 2,028 2,028
R2 0.65 0.67 0.68 0.68 0.68 0.68 0.68

Locality FE X X X X X X X
Log Dist CBD X Region FE X X X X X X X
Basic Tract Controls X X X X X X X
Historical Controls X X X X X X
Land Market Controls X X X X X
Exclude Portals+CBD X
Exclude Band 1.5km
Alt Time Aggregation X
Distance to TM Controls X

Note: Observation is a census tract. Each entry reports the coefficient from a regression of the change in the variable in each row on the change in firm or
residential commuter market access (RCMA for residential outcomes, FCMA for commercial outcomes). CMA is always computed holding employment
and population fixed at their initial levels and excluding the location itself from the summation. Each column corresponds to a specification. In land market
regressions of row 1, 3 and 4, outcomes are log changes between 2018 and 2000 and the change in CMA is that induced by all three phases holding residential
population and employment fixed at their levels in 2000 (population in 2000 is a linear interpolation from the 1993 and 2005 census; employment is from the
2000 CCB data). In population regressions of row 2, the outcome is the log change in residential population between 1993 and 2018. The change in CMA is
that induced by all three phases of TransMilenio, holding residential population and employment fixed at their levels in 1993 and 1990 respectively (measured
from the population and economic censuses). In establisment regressions of row 5, the outcome is the log change in the number of establishments between
2000 and 2015 from the CCB data against the same CMA measures as the land market regressions. Establishment specifications are weighted by the share of
establishments in a tract in the initial period. CBD X Region controls are log distance to the CBD, interacted with dummies for whether the locality is in the
North, West or South of the city. Basic tract controls include (i) log area, (ii) log distance to the main road, (iii) log distance to a main road interacted with log
distance to the CBD, (iv) dummies for each quartile of 1993 population density, 1990 employment share (employment divided by employment plus population),
and 1993 college share. Historical controls include dummies for each quartile of population density in 1918, and a dummy for whether the tract was closer
than 500m to a main road in 1933. Land market controls include the share of land developed, floor area ratio, share of floorspace used for commercial purpose,
and log average floorspace value in 2000. Any control that represents the initial value of an outcome variable is dropped from that specification. Columns
(1) to (3) incrementally add controls. Column (4) restricts the sample to tracts more than 500m from a portal or the CBD. Column (5) computes the change
in market access to tracts further than 1.5km from the tract itself. Column (6) assumes users take the quickest form of public transit (i.e. the minimum
rather than the weighted average within the public nest). Column (7) includes a dummy for whether tract is closer than 500m from any TransMilenio station.
Heteroscedasticity and Autocorrelation Consistent (HAC) standard errors (Conley (1999)) with a 0.5km bandwidth reported in parentheses. * p < 0.1; **
p < 0.05; *** p < 0.01.
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Table 3: Planned Networks

(1) (2)

Panel A: Residents

ln(Res Floorspace Price)

∆ ln(CMA) 0.384** 0.368**
(0.169) (0.175)

E[∆ ln(CMA Plan)] 0.084
(0.225)

N 4,402 4,402
R2 0.43 0.43
p-val 0.71

ln(Res Population)

∆ ln(CMA) 0.746** 0.817**
(0.331) (0.337)

E[∆ ln(CMA Plan)] -0.388
(0.371)

N 4,512 4,512
R2 0.37 0.37
p-val 0.29

Panel B: Firms

ln(Comm Floorspace Price)

∆ ln(CMA) 0.621** 0.687***
(0.248) (0.259)

E[∆ ln(CMA Plan)] -0.360
(0.426)

N 4,160 4,160
R2 0.11 0.11
p-val 0.39

Comm Floorspace Share

∆ ln(CMA) 0.291*** 0.290***
(0.088) (0.089)

E[∆ ln(CMA Plan)] 0.005
(0.099)

N 4,460 4,460
R2 0.15 0.15
p-val 0.96

ln(Establishments)

∆ ln(CMA) 1.329* 1.170
(0.751) (0.778)

E[∆ ln(CMA Plan)] 0.829
(0.692)

N 4,056 4,056
R2 0.68 0.68
p-val 0.24

Note: Column (1) repeats the baseline specification i.e. column (3) from Table 2. That is, each entry reports the coefficient from a regression of the change
in the variable in each row on the change in firm or residential commuter market access (RCMA for residential outcomes, FCMA for commercial outcomes).
Column (2) adds as an additional explanatory variable the average change in RCMA or FCMA (depending on the outcome, RCMA for residential and FCMA
for commercial) each tract would have received had TransMilenio been built across the 4 historical plans. The p-value corresponds to a χ2 test of equality
of coefficients on ∆ln(CMA) in columns 1 and 2. Heteroscedasticity and Autocorrelation Consistent (HAC) standard errors (Conley (1999)) with a 0.5km
bandwidth reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 4: Staggered Station Openings

(1) (2) (3) (4)

Panel A: Residents
ResPr ResPr ResPop ResPop

ln(RCMA) 0.183* 0.231** 0.396* 0.521**
(0.101) (0.109) (0.237) (0.253)

ln(RCMA) Later Phase 0.336 0.345
(0.239) (0.348)

N 2,144 2,144 2,207 2,207
R2 0.45 0.45 0.29 0.29

Panel B: Firms (Land Markets)
CommPr CommPr CommSh CommSh

ln(FCMA) 0.483** 0.478** 0.210*** 0.206***
(0.199) (0.201) (0.057) (0.056)

ln(FCMA) Later Phase 0.281 0.220
(0.666) (0.172)

N 2,055 2,055 2,182 2,182
R2 0.06 0.06 0.08 0.08

Panel C: Firms (Census Employment)
Emp Emp Form Emp Form Emp

ln(FCMA) 1.640 1.791* 2.097 2.143
(1.064) (1.071) (1.339) (1.348)

ln(FCMA) Later Phase 1.497 0.438
(1.288) (1.745)

N 1,927 1,927 1,629 1,629
R2 0.23 0.23 0.17 0.17

Note: Table repeats the baseline specification i.e. column (3) from Table 2. Outcomes are (growth in) residential floorspace prices (Res Pr), residential
population (Res Pop), commercial floorspace prices (Comm Pr), commercial floorspace share (Comm Sh), employment from the census (Emp), employment
in establishments with more than 10 workers (Form Emp). For land market outcomes, the change in outcomes are measured between 2008 and 2000. The
right hand side variables include CMA growth due to (i) phases 1 and 2 of the system open by 2006 (ln(CMA)) and (ii) phase 3 of the system open by 2013
(ln(CMA) Later Phase). For residential population, the change in outcome in measured between the 2005 and 1993 census. The right hand side variables
include CMA growth due to phase 1 (open by 2003, with most opening by 2001), and the change in CMA due to phases 2 and 3 (opened in 2006 and 2013). For
employment, the change in employment is measured from between the 2005 and 1990 economic censuses. The CMA variables are the same as for residential
population. Heteroscedasticity and Autocorrelation Consistent (HAC) standard errors (Conley (1999)) with a 0.5km bandwidth reported in parentheses. *
p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 5: IV Estimates

Baseline IV IV-LCP&Tram
Exc Own

IV-LCP&Tram
Exc 1.5km

Panel A: Residents
ln(Res Floorspace Price) 0.384** 0.276*** 1.117*** 1.111***

(0.169) (0.102) (0.247) (0.229)
N 2,201 2,201 2,202 2,202
F-Stat 2,475.45 166.46 201.21

ln(Res Population) 0.746** 0.553** 0.554 0.653
(0.331) (0.225) (0.483) (0.438)

N 2,256 2,256 2,239 2,239
F-Stat 2,404.19 248.56 295.97

Panel B: Firms
ln(Comm Floorspace Price) 0.621** 0.552*** 0.397 0.607**

(0.248) (0.204) (0.291) (0.304)
N 2,080 2,080 2,085 2,085
F-Stat 3,165.71 664.43 746.85

Comm Floorspace Share 0.283*** 0.257*** 0.227** 0.204**
(0.093) (0.071) (0.105) (0.103)

N 2,231 2,230 2,235 2,235
F-Stat 3,112.12 670.54 733.74

ln(Establishments) 1.329* 1.229** 2.207** 1.954**
(0.751) (0.562) (0.880) (0.827)

N 2,028 2,028 1,995 1,995
F-Stat 2,878.76 402.94 494.76

Note: Observation is a census tract. Specification corresponds to column (3) of Table 2. Column 1 reproduces the baseline results. Column 2 instruments
the true change in CMA (i.e. including the location itself in the summation and measure employment and population in both periods instead of holding them
constant at their initial values) with the baseline change in CMA measure from column 1. Column 3 instruments for the change in CMA using the average
change in CMA across the IV and tram instruments constructing excluding the tract itself in the summation, while column 4 excludes all tracts closer than 1.km
from the tract. In this specification, only census tracts further than 500m from a portal and a dummy for whether a census tract is further than 1km from the
historical tram system is included (to capture direct effects from the tram instrument). Column 1 reports HAC standard errors as in the baseline specification.
Columns 2-4 report heteroscedasticity robust standard errors. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 6: Aggregate Results Using Sufficient Statistics Approach

Panel A: VTTS Comparison
VTTS GE GE (No Ext.)

Welfare Gain (%) 1.260 2.335 1.527
90% CI (0.740,3.106) (0.740,5.861)
95% CI [0.309,3.692] [0.475,6.936]

As Fraction of VTTS 53.95 82.49
90% CI (44.20,71.74)
95% CI [39.22,85.96]

Panel B: Aggregate Effects

No Migration Migration

Welfare 2.282 0.597
GDP 3.121 15.131
GDP Net of Costs 2.504 14.514
Population 0.000 9.514
Rents -0.672 5.283
% of Obs GDP Growth 2.963 14.362
% of Obs Population Growth 0.000 34.886

Panel C: Incorporating Congestion

% Change in Welfare % of No Congestion
Welfare Change

No Congestion 3.921 100.00
Congestion 3.943 100.55
Convert TM to Car Lanes 0.028 0.641

Notes: Table shows the welfare effects from TransMilenio using the sufficient statistics approach from Proposition 1. Panel A compares the GE welfare effects
with those from the first order approximation (VTTS) in proposition 2. The % change in welfare is computed as adding TransMilenio back to the counterfactual
equilibrium without it. Each entry is computed by first simulating the effect of removing TransMilenio (the initial equilibrium) and then adding it back in under
the different approaches. In column 1, the change in travel times accounts for the discrete choice over modes used to aggregate mode-specific travel times. In
column 2, the GE effects are reported using the main reduced form elasticities (column 3 in Table 2). 90% and 95% confidence intervals are provided by
bootstrapping the quantitative exercise 200 times as described in Appendix C.9. The second row reports the fraction of GE gains are explained by VTTS, with
confidence intervals also reported. The non-parametric test on the bootstrap sample of whether the fraction of gains explained by VTTS is greater than 1 rejects
this null (p-value 0.04). Column 3 reports GE results from a model without externalities. It computes the reduced form elasticities using the expressions derived
in Appendix C.8.1, using estimates for θ, α, β, σ and setting µA = µU = 0. Confidence intervals are not reported since this removes sampling variation from
the 4 estimated reduced form elasticities. Panel B shows the (negative of the) value of the percentage change in each variable from removing the TransMilenio
network (phases 1 through 3) from the 2016 equilibrium, under both assumptions on population mobility. The scenario with migration assumes a migration
elasticity of ρ = 3 (see Appendix E.1 for details). The last two rows show the fraction of observed growth of population and GDP between 2000 and 2016 that
can be accounted for by TransMilenio under each scenario. Bogotá’s GDP increased by 105.35% (average annual growth rate of 4.6%) while population grew
by 27% over the period. GDP net of costs shows the NPV increase in GDP accounting for capital costs and the NPV of operating costs as described in
Appendix F.4. Note the average welfare value in Panel B differs from that in Panel A, which uses the counterfactual equilibrium without TransMilenio as the
initial equilibrium for ease of comparison with the VTTS. Lastly, Panel C reports welfare results from model allowing for congestion (see Appendix E.2 for
details). A congestion elasticity of 0.06 is used, the average congestion elasticity estimated for Bogotá by Duranton and Akbar (2017). The first row shows the
welfare effect (the absolute value of ŪNoTM/ŪTM − 1) in the closed city model in this model extension, when the congestion elasticity is set to zero. This
differs slightly from the baseline number since the congestion elasticity is used when calibrating the unobserved traffic matrix for the observed equilibrium, and
the construction of commute times is slightly different due to the routing model of commutes. The second row shows the welfare impact of TransMilenio with
congestion, and the second column shows the welfare gains as a fraction of the baseline case without congestion in row 1. The third row shows the welfare
impact had TransMilenio routes been made into car lanes instead of BRT (the absolute value of ŪNoTM/ŪReplaceTMWithRoads − 1).
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Table 7: Commuting Elasticities

OLS IV-LCP&Tram PPML PPML PPML

HighSkill X ln Commute Cost -0.0250** -0.0295** -0.0154*** -0.0054 -0.0253***
(0.0116) (0.0120) (0.0028) (0.0104) (0.0089)

LowSkill X ln Commute Cost -0.0278** -0.0460*** -0.0292*** -0.0534*** -0.0663***
(0.0121) (0.0150) (0.0027) (0.0109) (0.0096)

N 1,738 1,738 1,444 2,608 4,032
Years 1995,2015 1995,2015 2015 1995,2015 1995,2011,2015

Origin-Destination-Skill-Car Ownership FE X X X X
Destination-Skill-Year FE X X X X X
Origin-Skill-Car Ownership-Year FE X X X X X

Note: Outcome is the conditional commuting shares. Observation is an origin-destination-skill-car ownership-year cell. Skill corresponds to college or non-
college educated workers. Only trips to work during rush hour (5-8am) by individuals aged 18-55. Columns 1 and 2 estimate OLS and IV models between
1995 and 2015. Columns 3-5 run PPML models on alternative sets of years: 2015, 1995 and 2015, and 1995, 2011 and 2015 respectively. Since the coefficient
for high-skill workers is imprecise in the main specification using two years in column 4, the final column 5 pools data from 3 years. Travel times are measured
according to the network in each year e.g. travel times for TransMilenio in 2011 come from the 2006 network, while those in 2015 come from the 2012
network. Standard errors are clustered at the origin-destination locality. * p < 0.1; ** p < 0.05; *** p < 0.01

Table 8: GMM Results

Parameter Estimate

Panel A: Firms
µA 0.242*

(0.128)

Panel B: Workers
ηL 2.070**

(0.805)

ηH 2.250***
(0.734)

µL
U 0.730**

(0.372)

µH
U 1.002***

(0.335)

Note: Estimates are from joint GMM procedure as described in text. In Panel A, controls are locality fixed effects, log distance to CBD interacted with region
fixed effects, basic tract controls (log area, log distance to the main road, log distance to a main road interacted with log distance to the CBD, dummies for
each quartile of 1993 population density, 1990 employment share (employment divided by employment plus population), and 1993 college share), land market
controls (share of land developed, floor area ratio, share of floorspace used for commercial purpose, and log average floorspace value in 2000) and historical
controls (dummies for each quartile of population density in 1918). In Panel B, controls are locality fixed effects, basic tract controls (log area, log distance
to the main road, log distance to a main road interacted with log distance to the CBD, dummies for each quartile of 1990 employment share), land market
controls (share of land developed, floor area ratio, share of floorspace used for commercial purpose, and dummies for each quartile of floorspace value in 2000)
and historical controls (dummies for each quartile of population density in 1918). All controls and fixed effects are interacted with group-specific dummies.
Tracts closer than 500m to a TransMilenio portal are excluded. Instruments exclude the tract itself in summations, and are averages across the LCP and Tram
measures as in the reduced form results. Standard errors clustered by tract obtained from 200 block-bootstrapped replications resampled at the tract-level.*
p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 9: Main Quantitative Results & Distributional Effects

Average Welfare Inequality

Panel A: Main Results
Diff θ, η, Imperf Sub 1.007 0.546

90% CI (0.254, 4.022) (-0.159, 0.875)
95% CI [0.017, 4.407] [-0.441, 1.138]

P-value ̂̄UH > ̂̄UL 0.15

Panel B: Decomposing the Role of Elasticities
Same η, θ, Perf Sub 2.191 -0.371
Diff θ, same η, Perf Sub 2.261 -0.163
Diff θ, η, Perf Sub 2.510 -0.139

Panel C: Model Extensions
Domestic Services 0.832 0.585
Local Home Ownership 0.854 0.596
All Renters 0.867 0.619

Note: Table shows the percentage welfare and inequality change (defined as ̂̄UH/ ̂̄UL) from TransMilenio under models. Each entry is computed by first
simulating the effect of removing TransMilenio, and reports the absolute value of the percentage welfare change from moving from the TM to no TM
equilibrium. Panel A reports results from the full model, where θg , ηg are set to their estimated values and σ = 1/0.7 as described in the text. Confidence
intervals from 200 bootstrap replications are reported (using the same procedure as described in Appendix C.9), as well as the p-value from a non-parametric
test of whether the high-skill gain more than the low-skilled across these bootstraps. Panel B reports results decomposing the role of these elasticities. The first
row assumes θ, η are equal across groups (set to their average value) and labor types are perfect substitutes in production. The second and third rows allow
θ and η to differ across groups (set to their estimated values). Panel C shows results from model extensions to allow for employment of the low-skilled in
domestic services, as well as alternative assumptions over home ownership. See Appendix E.5 and E.6 for further details.
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Table 10: Policy Counterfactuals

Panel A: Alternative Networks

% ∆ Welfare % ∆Inequality % ∆Output
Remove Line South -0.298 -0.060 -0.318
Remove Line North -0.084 -0.204 -0.699
Remove Feeders -0.942 -0.196 -1.014
Faster TM 1.355 0.698 2.790

Panel B: Land Value Capture Welfare Effects

% Increase Relative to Baseline

Welfare Output
Free Adjustment 44.04 15.78
LVC, Bands 24.47 9.17
LVC, CMA 43.82 11.95

Panel C: Land Value Capture Revenue Effects

Closed City Open City

LVC Band Revenue (mm) 58.62 152.77
As share of capital costs 4.04 10.54

LVC CMA Revenue (mm) 88.31 297.57
As share of capital costs 6.09 20.53

Note: Panel A shows the impact of particular network components relative to the full network using the full model. The numbers report the percentage change
in each variable from moving from the full TransMilenio network to the counterfactual one. The last row reports results from making the TransMilenio faster,
with an operational speed of 35km/h. Panel B shows the impacts of alternative housing supply models, using the model extension from Section E.4. I first solve
for the counterfactual equilibrium without TransMilenio. I then compute the equilibrium returning to the TransMilenio network under each housing supply
model, and report the percentage change in each variable as a fraction of returning to the observed network under the fixed housing supply assumption (minus
one, since the change in each variable in each counterfactual scenario exceeds the value under fixed housing supply). The first row is the case with freely
adjusting housing. The second row is the distance-band based land value capture (LVC) scheme, where the government sells rights to construct up to 30%
new floorspace in tracts closer than 500m from stations. The third row is the CMA-based scheme where the same number of permits are issued by distributed
instead by a tract’s relative change in CMA as described in the text. These figures are all from the closed city model, relative comparisons are similar in the
open city model. Panel C shows the government revenue earned under the land value capture policies, in levels and as a fraction of TransMilenio’s construction
costs. These are reported for the closed and open city model separately since the results vary by assumption. Numbers in millions of 2016 USD.
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Figures
Figure 1: Change in Commuter Market Access from TransMilenio
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Note: Plot shows the change in CMA from the baseline specification. Population and employment arefixed at their initial level
and changing only commute costs (to the full TransMilenio network as of phase 3). Tracts are grouped into vigintiles based on
the the change in CMA, with warmer colors indicating a larger increase in CMA. Black line shows the TransMilenio routes as of
2013. The changes in CMA are normalized to have mean zero. For the change in RCMA, the min is -.198, the max is .375, the
standard deviation is 0.097 and the average range of each vigintile is .028. For the change in FCMA, the min is -.147, the max is
.246, the standard deviation is 0.068 and the average range of each vigintile is .020.
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Figure 2: Non-Parametric Relationship Between Outcomes and Commuter Market Access
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(b) Residential Population
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(c) Commercial Floorspace Prices
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(d) Employment
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Note: Plot shows the non-parametric relationship between outcomes and CMA. Specifications correspond to the reduced form from column (3)
of Table 2. Top and bottom 2% of the change in CMA are trimmed to reduce noise at the tails and zoom in on main relationship.
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Figure 3: Residential Floorspace Price Event Study
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Note: See discussion in Section 4.3 for details. The year before opening is the omitted category. Heteroscedasticity and Autocorrelation
Consistent (HAC) standard errors (Conley (1999)) with a 0.5km bandwidth reported.
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Table A.2: Aggregate Welfare Effects: Robustness

No Migration Migration

Panel A: Alt. Estimated Params
Baseline 2.28 0.60
IV 2.25 0.39
IV-Loc 2.45 0.67
Alternative Times 2.07 0.18
θ OLS 2.57 0.69
θ IV 1.16 0.29

Panel B: Alt. Calibrated Params
σ = 4 2.53 1.19
σ = 8 2.17 0.48
β = 0.8 2.51 0.70
β = 0.7 2.20 0.56
ρ = 6 2.28 0.57

Note: Table shows the percentage change in average welfare (as defined in Table 6) under alternative parameter values using the sufficient statistics approach.
Panel A examines sensitivity to alternative values of estimated parameters. The first row recreates the baseline results. The second row uses the CMA elasticities
from the second column of Table 5 which instrument for the realized change in CMA (i.e. the term that does not hold residential population and employment
fixed at their initial value in the post-period) using the baseline measure. The third row uses the CMA elasticities from the third column of Table 5 when
instrumenting for the realized change in CMA using the LCP and Tram instrument. The fourth row uses the coefficients from column 6 of Table 2, using an
alternative method to aggregate mode-specific commute times. The fifth row uses an alternative value for θ = 3.97 estimated via OLS in column 3 of Table
A.20. The six row uses a value for θ = 6.15 estimated via IV using the LCP and Tram instrument in column 4 of Table A.20. Panel B varies the value of
calibrated parameters.
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Table A.3: List of Parameters and Sources of Identifying Variation

Panel A: Externally Calibrated Parameters

Parameter Description Identification Source

σ Elasticity of substitution between labor
types

Card (2009)

σD Elasticity of demand Feenstra et. al. (2018)

Panel B: Internally Calibrated Parameters

Parameter Description Identification Source

αs Cost Share of Commercial Floorspace Same as description

β Long-run housing expenditure share Expenditure share on housing at high income levels

αsg Skill-specific labor demand shifters Share of industry wage bill paid to high-skill workers

h̄ Subsistence housing requirement Average expenditure on housing

pa Cost of cars Average expenditure on cars

Tg Location parameter of worker
productivity distribution

College wage premium

Panel C: Estimated Parameters

Parameter Description Identification Source

bm Travel mode preference shifter Mode choice shares conditional on travel times

κ Dependence of commute costs on
travel times

Sensitivity of mode choices (within commutes) to travel times

λ Correlation of preference shocks in
public mode nest

Differential sensitivity of mode choices to travel times amongst
public modes

θg Commuting elasticity Sensitivity of commute choices to travel times (in changes)

ηg Resident supply elasticity Sensitivity of residential populations to instruments for RCMA

µU,g Amenity externality Sensitivity of residential populations to shifts in the share of
high-skilled residents induced by instruments*

µA Productivity externality Sensitivity of model productivity residual to shifts in labor
supply induced by instruments for FCMA

*Note: Instruments are the differential growth inf instrumented RCMA for high-type vs low-type, and the growth of instrumented RCMA for high-skill
interacted with initial house prices (controls allowing for a separate effect of initial house prices on population growth also included).
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Table A.4: Multigroup Model: Robustness

Panel A: Main Robustness

Avg Welfare Inequality Output Rents

Baseline 1.007 0.546 2.091 2.143
Migration 0.146 0.044 4.496 5.032
σL = 2.5 1.294 0.444 2.045 2.188
Census Employment 1.009 0.545 2.092 2.148
σ = 4 0.916 0.595 2.137 2.049
σ = 9 1.077 0.512 2.060 2.201
θ PPML 2.657 0.493 2.998 3.194
θ PPML Diff 0.888 0.851 2.027 1.916
θ OLS 1.960 0.237 2.687 2.945
Joint Pref. Shock 0.831 0.917 0.440 0.585

Panel B: Net Benefit Under Multigroup Model

No Migration Migration

% Net Increase GDP 1.47 3.88

Notes: Panel A shows main results (constructed in the same way as Table 9. Row 1 reproduces the main results. Row 2 uses the open city model with migration
elasticity of ρ = 3 for both groups. Row 3 uses a larger value of the elasticity of substitution between skill groups in production, using the value of 2.5 from
Card (2009) estimated at the MSA-level in the US. Row 4 uses census employment measured in 2005 instead of the CCB employment measured in 2015 as the
measure of employment in the baseline equilibrium. Rows 5 and 6 use alternative values for the elasticity of demand. Rows 7, 8 and 9 use alternative values
of θg estimated in columns 1, 3 and 5 of Table 7 respectively. Row 10 has a joint decision over residence and workplace location (with workers having an
idiosyncratic preference for each pair). Panel B recreates the net increase in GDP from Panel B of Table 6 for the multigroup model.

Table A.5: Unweighted Establishment Regressions

(1) (2) (3)

Weighted 2.101*** 1.787*** 1.168*
(0.611) (0.619) (0.604)

N 2,028 2,028 2,028
R2 0.21 0.23 0.27

Unweighted 1.050* 1.175** 0.697
(0.550) (0.555) (0.547)

N 2,028 2,028 2,028
R2 0.24 0.24 0.27

Locality FE X X X
Log Dist CBD X Region FE X X X
Basic Tract Controls X X X
Historical Controls X X
Land Market Controls X

Note: First row reports the establishment regressions from the first three columns of the main table (Table 2), where observations are weighted by a tracts share
of total establishments in the initial period. Second row reports the same specifications without weights. Heteroscedasticity and Autocorrelation Consistent
(HAC) standard errors (Conley (1999)) with a 0.5km bandwidth reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A.6: Gravity Equation: Single Group, Full Estimates

Panel A: Main Regression

PPML PPML OLS IV

ln Commute Cost -0.036** -0.039** -0.035* -0.071***
(0.017) (0.016) (0.020) (0.024)

N 710 710 576 576
Controls X Year FE X X X

Panel B: Alternative Clustering

PPML PPML PPML

ln Commute Cost -0.039** -0.039** -0.039*
(0.016) (0.018) (0.022)

N 710 710 710
Clusters 355 38 19
Clustering O-D O-t & D-t O & D

Note: Panel A Outcome is the commute shares in levels (PPML) or logs (OLS). Observation is an origin-destination-year cell. Only trips to work during
rush hour (hour of departure 4-8am) by individuals 18-55 are included. Data is from 1995 and 2015 mobility surveys. Columns 1-2 estimate PPML models,
3 and 4 OLS and IV models respectively. The last column instruments for travel times in the post-period using the the average change in times across the
LCP and tram instruments. Route-level controls are (i) the average number of crimes per year from 2007-2014, (ii) the average log house price in 2012 and
(iii) the share of the trip that takes place along a primary road along the least-cost routes between origin and destination. Robust standard errors are reported
in parentheses. Panel B repeats the baseline specification (column 2 of Panel A) with alternative levels of clustering (origin-destination pair; origin-year and
destination-year; origin and destination). * p < 0.1; ** p < 0.05; *** p < 0.01

Table A.7: Costs and Benefits

No Migration Migration

NPV Increase GDP (mm) 43619.74 211452.29
Capital Costs (mm) 1449.75 1449.75
NPV Operating Costs (mm) 7180.53 7180.53
NPV Total Costs (mm) 8630.28 8630.28
NPV Net Increase GDP (mm) 34989.46 202822.00
% Net Increase GDP 2.50 14.51

Table A.8: Note: Table shows the costs and net benefits, computing net present values (NPV) over a 50 year time horizon with a 5% interest rate. All
numbers are in millions of 2016 USD. The NPV of the increase in GDP is simply the NPV of the change in Bogotás GDP in dollar values. Capital costs are
the one-time infrastructure costs of building the network. Total costs are the one-time capital costs associated with building the network combined with the
NPV of operating costs. The NPV net increase in GDP nets this out from the gross gains in the first row, while the final row converts this back into a fraction
of 2016 GDP.
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Table A.9: αHs Across Industries
Industry αHs Relative HS Wage Bill

Domestic Services 0.160 0.055
Hotels & Restaurants 0.420 0.376
Social & Health Services 0.508 0.623
Transport & Storage 0.515 0.647
Construction 0.552 0.802
Wholesale, Retail, Repair 0.583 0.959
Manufacturing 0.599 1.056
Real Estate 0.601 1.066
Agriculture 0.628 1.254
Arts, Entertainment & Recreation 0.639 1.342
Other Services 0.701 2.016
Water Treatment and Distribution 0.729 2.441
Public Administration 0.769 3.322
Foreign Orgs 0.773 3.430
Elec, Gas 0.800 4.303
Social & Health Services 0.801 4.343
Information & Communication 0.804 4.458
Professional, Scientific and Technical Activities 0.837 6.154
Mining 0.846 6.761
Education 0.854 7.436
Financial Brokerage 0.865 8.455

Note: See Section D.2 for details.

Table A.10: Employment Data Summary Statistics

Year N Est. Mean Emp. p10 p50 p90

Panel A: Census
1990 219,812 5.41 1 2 7
2005 625,852 4.93 1 2 6

Panel B: Chamber of Commerce
2000 34,322
2015 126,867 2.37 1 1 4

Note: The first column provides the number of establishments in each dataset, column (2) provides the average employment while
columns (3)-(5) report percentiles of the firm size distribution. Employment is not reported in the raw 2000 Chamber of Commerce
establishment data.
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Table A.11: Trip Characteristics in 2015

Bus Car Walk TM

Share of all trips 0.343 0.137 0.360 0.161
Mean Distance (km) 6.683 6.178 1.526 10.487
Share of (trip purpose)

To work 0.478 0.150 0.158 0.214
Business trips 0.289 0.333 0.184 0.193
To school 0.292 0.042 0.502 0.164
Private matters 0.267 0.163 0.450 0.120
Shopping 0.149 0.121 0.678 0.052

Note: Table created using data from the 2015 Mobility Survey.

Table A.12: Commute Characteristics over Time

Mode Bus Car Walk TM

Panel A: Commute Shares
1995 0.74 0.17 0.09
2005 0.66 0.17 0.07 0.11
2011 0.46 0.16 0.19 0.19
2015 0.48 0.15 0.16 0.21

Panel B: Commute Speeds (kmh)
1995 16.31 25.37 8.20
2005 12.88 15.65 6.53 16.88
2011 10.49 14.02 7.95 13.08
2015 10.37 12.95 6.36 13.04

Panel C: Ownership shares
1995 0.29
2005 0.28
2011 0.25
2015 0.25

Note: Only trips to work included in trip-level data (car ownership is at the household level).
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Table A.13: Effect of TransMilenio on other Mode Speeds

Outcome: ln(Speed) (1) (2) (3) (4)

Panel A: Car Trips

TM Route X Post -0.107 -0.060 0.014 0.052
(0.086) (0.089) (0.064) (0.065)

R2 0.80 0.80 0.80 0.80
N 9,916 9,916 9,916 9,916

Panel B: Bus Trips
TM Route X Post -0.164*** -0.074 -0.064 -0.020

(0.046) (0.047) (0.041) (0.040)

R2 0.72 0.72 0.72 0.72
N 38,616 38,616 38,616 38,616

Route Measure Share TM Share TM TM>75% TM>75%
Baseline Controls X X X X
Locality Origin X Post FE X X X X
Locality Destination X Post FE X X X X
Log Distance X Post FE X X

Note: Observation is a UPZ Origin-UPZ Destination-Year. Outcome is log reported speed from the 1995 and 2015 Mobility Surveys. Share TM
is the share of a car trip’s least cost route that lies along a TM line. TM>75% is a dummy equal to one if the share is greater than 75%. Baseline
controls are a gender dummy, hour of departure dummies and age quantile dummies, each interacted with year dummies. Only trips to work
included during rush hours included. Panel A includes only trips by car, while panel B includes only those by bus. Standard errors clustered at the
origin-destination pair-level. p < 0.1; ** p < 0.05; *** p < 0.01
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Table A.14: Relationship between Predicted and Observed Times Over Time

(1) (2) (3) (4)

ln(Predicted Time) 0.705*** 0.511*** 0.655*** 0.697***
(0.034) (0.020) (0.032) (0.023)

Post 0.317* -0.662*** 0.151
(0.190) (0.126) (0.216)

ln(Predicted Time) X Post 0.018 0.187*** 0.046
(0.051) (0.030) (0.052)

Car -0.037
(0.167)

TM 0.020
(0.193)

ln(Predicted Time) X Car 0.026
(0.044)

ln(Predicted Time) X TM 0.003
(0.047)

R2 0.42 0.34 0.39 0.42
N 2,219 6,671 2,419 5,005
Mode Car Bus TM All
Post Only X

Note: Observation is a UPZ Origin-UPZ Destination-Year. Outcome is log reported time from Mobility Survey. Post is a dummy equal to one in 2015 and
zero in 1995 (2005 for TM). Trips include journeys to and from work during rush hour (hour of departure between 5 and 8 am, hour of return between 4 and
6pm). Individual observations averaged to the trip-year level, and regressions weighted by number of individual observations in each trip-year-mode. Columns
(1)-(3) include observations for pre- and post years and consider only one mode; column (4) includes only observations from the post period and includes all
modes. Robust standard errors in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01
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Table A.15: Effect of TransMilenio on Growth in Floorspace

Outcome: Floorspace Growth (1) (2) (3) (4)

∆ ln RCMA -0.084
(0.211)

∆ ln FCMA -0.106
(0.286)

ln Distance F1 0.014 0.013
(0.014) (0.018)

ln Distance F2 0.016 0.009
(0.015) (0.020)

ln Distance F3 -0.014 -0.019
(0.026) (0.027)

ln Distance F1 X Far CBD 0.005
(0.025)

ln Distance F2 X Far CBD 0.014
(0.026)

ln Distance F3 X Far CBD 0.002
(0.039)

N 2,235 2,233 2,205 2,205
R2 0.34 0.34 0.33 0.33

Note: Specification is baseline specification from main table with full controls (column (3)), but outcome is growth in floorspace between 2018 and 2000
using the Davis-Haltiwanger measure. In column 3 the coefficients report the log distance from the closest station in each phase of TransMilenio. Column 4
interacts this with a dummy for whether the tract is above the median distance from the CBD (Far CBD). The full interaction is included. Heteroscedasticity
and Autocorrelation Consistent (HAC) standard errors (Conley (1999)) with a 0.5km bandwidth reported in parentheses. *p<0.1; ** p < 0.05; *** p < 0.01
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Table A.16: TransMilenio’s Effect on Income

(1) (2) (3)

Panel A: Clustered by UPZ X Post
ln(RCMA) 0.982*** 0.510** 0.522**

(0.349) (0.224) (0.224)

N 87,674 87,673 87,673
R2 0.48 0.56 0.1563
P-val Coef = 1/θ 0.31

Panel B: Clustered by UPZ
ln(RCMA) 0.982** 0.510* 0.522*

(0.451) (0.288) (0.287)

N 87,674 87,673 87,673
R2 0.48 0.56 0.1563
P-val Coef = 1/θ 0.43

UPZ FE X X X
Region X Year FE X X X
Log Dist CBD X Region X Year FE X X X
Basic Tract Controls X Year FE X X X
Historical Controls X Year FE X X X
Land Market Controls X Year FE X X X
Basic Worker Demographics X Year FE X X X
Education X Year FE X X
Hours Worked X Year FE X

Note: Outcome variable is the log average weekly labor income for full-time, working age (18-65) individuals reporting more than 40 hours worked per week.
Data covers 2000-2005 in the pre-period and 2015-2019 in the post period and comes from the ECH and GEIH. Post is a dummy for the post period. RCMA
is measured at the UPZ-level using the pre-TM network in the pre-period, and using the 2013 network in the post-period, and at the UPZ-level. Region are
dummies for the North, West and South of the city. Controls present are the same as in the main specification (interacted with year dummies), other than basic
worker demographics which contain dummies for age (ine 10 year bins) and gender. Columns 2 and 3 contain dummies for each category of highest education
level attained. Column 3 contains dummies for hours worked per week in 10 hour bins. Standard errors are clustered by UPZ and period. The p-value tests the
null that the coefficient on log RCMA equals 1/θ as predicted by the model, with θ = 3.39. Standard errors are clustered by UPZ and Post in Panel A, and by
UPZ in Panel B. * p < 0.1; ** p < 0.05; *** p < 0.01.

Table A.17: TransMilenio’s Effect on the College Share of Residents

(1) (2)

∆ lnRCMA 0.053* 0.061**
(0.031) (0.031)

N 2,106 2,106
R2 0.15 0.18
Init. Coll Share X

Note: Outcome is the change in the share of college educated residents in a tract between 1993 and 2018. Specification includes all controls from baseline
specification, excluding the initial college share in column 1 but including it in column 2. HAC standard errors are reported with a 500m bandwidth. *
p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A.18: Impacts of Both Types of CMA

(1) (2) (3)

Panel A: Residents
∆ ln(Res Price) ∆ ln(Res Pop)

∆lnRCMA 0.187 1.048***
(0.176) (0.388)

∆lnFCMA 0.307 -1.107
(0.242) (0.677)

N 2,161 2,228
R2 0.43 0.37

Panel B: Firms, Floorspace
∆ ln(Comm Price) ∆ Comm Share

∆lnFCMA 0.441 0.553***
(0.321) (0.101)

∆lnRCMA 0.160 -0.352***
(0.279) (0.070)

N 2,048 2,194
R2 0.11 0.16

Panel C: Firms, Employment
∆ ln(Est, CCB) ∆ ln(Emp, Census) ∆ ln(Emp Formal, Census)

∆lnFCMA -1.127 1.384 2.562
(0.832) (1.179) (1.577)

∆lnRCMA 3.419*** 0.036 -0.869
(0.769) (0.519) (0.801)

N 2,028 1,943 1,653
R2 0.28 0.23 0.16

Note: Table repeats the baseline specification i.e. column (3) from Table 2 and columns (1) and (3) from Table 4 for census employment, including both the
change in RCMA and FCMA in the same regression. Heteroscedasticity and Autocorrelation Consistent (HAC) standard errors (Conley (1999)) with a 0.5km
bandwidth reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A.19: Commuting in 1995

lnSpeed lnSpeed Bus Bus

Bus -0.363*** -0.309***
(0.020) (0.016)

Low-Skill 0.287*** 0.163***
(0.010) (0.011)

R2 0.06 0.76 0.18 0.47
N 14,945 12,975 18,843 16,461
UPZ O-D FE X X
Time of day Controls X X X X
Demographic Controls X X X X

Note: Data is from 1995 Mobility Survey. Low-Skill is a dummy for having no post-secondary education. Bus is a dummy for whether
bus is used during a commute, relative to the omitted category of car. Time of day controls are dummies for hour of departure, and
demographics are log age and a gender dummy. UPZ O-D FE are fixed effects for each upz origin-destination. Only trips to work
during rush hour (hour of departure between 5-8am) included. Standard errors clustered at upz origin-destination pair. * p < 0.1; **
p < 0.05; *** p < 0.01

Table A.20: Aggregate Gravity Equation

PPML PPML OLS IV

ln Commute Cost -0.036** -0.039** -0.035* -0.071***
(0.017) (0.016) (0.020) (0.024)

N 710 710 576 576
Controls X Year FE X X X

Note: Outcome is the log number of commuters between each origin and destination locality pair in 1995 or 2015. Only trips to work during rush hour
(5-8am) by heads of households included. Fixed effects for each origin locality-year, destination locality-year, and origin-destination pair included in each
specification. Controls include (i) the average number of crimes per year from 2007-2014, (ii) the average log house price in 2012 and (iii) the share of the
trip that takes place along a primary road along the least-cost routes between origin and destination. Columns 1 and 2 run PPML specifications (with column
2 corresponding to the main value from the text), column 3 runs OLS and column 4 runs an IV using the same instrument as column 3 of Table 5. Standard
errors clustered at the origin-destination pair-level are reported.* p < 0.1; ** p < 0.05; *** p < 0.01
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B Additional Figures

Figure A.1: TransMilenio Network and Bogotá

(a) TransMilenio Routes

TransMilenio Lines
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Phase II
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Feeder Routes

(b) Population Density in 1993
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Figure A.2: TransMilenio Routes: Before and After

(a) Previous bus lanes, Avenida Caracas (Sur) (b) TransMilenio Station, Avenida Caracas (Norte)
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Figure A.3: Planned Networks From Previous Studies

(a) Ineco-Sofretug, 1981 (b) Intermetro-SPA, 1987

(c) JICA, 1996 (d) Bechtel-Systra-Ingetec, 1997

Note: Each panel corresponds to the plan by a different consortium of consultants, in the corresponding year. The colored lines are the
proposed networks (dashes sometimes indicating different lines), the black dashed line is the limit of the city in that year. Images obtained from
https://www.metrodebogota.gov.co/sites/default/files/documentos/Producto%2015.%20Tomo%201.%20Formulación%20y%20caracterización%20de%20las%20alternativas%20de%20red%20de%20metro_0.pdf?width=800&height=800&iframe=true.
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Figure A.4: Planned Networks From Previous Studies
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Regression of the observed change in the data on the model-predicted change has
 coefficient 1.598 (0.822),and a p-value for the F-test that the slope is 1 of 0.467.

Note: Graph plots a binscatter (50 bins) the observed change in the share of floorspace used for residential purposes in the data (y-axis) vs the
model (x-axis). Both are normalized to have unit mean on the plot. Graph caption also reports results from regression of the change in the share
of floorspace used for residential purposes in the data on that from the model.
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Figure A.5: College Share in Observed vs Counterfactual Equilibrium with Faster TM
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Note: Graph shows share of high-skill residents in tracts in 100m cells from their nearest TransMilenio station. 1500m cell includes all tracts
1500m or more from their nearest station. Red bars show the observed shares in the post-period, blue bars show those from a counterfactual
where TransMilenio runs at 35 km/h.

Figure A.6: Event Study on Floorspace Area

-1

-.5

0

.5

1

Lo
g 

Fl
oo

rs
pa

ce
 A

re
a

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Years from Opening

Note: Figure plots event study similar to Figure 3 but using log floorspace area as the outcome.
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Figure A.7: Employment in Chamber of Commerce vs Census

(a) 2015 Establishment Comparison by Locality
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(b) 2000 Establishment Comparison by Locality
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(c) Establishment Comparison by Sector
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Correlation is 0.901 in 2015, 0.745 in 2000.

Figure A.8: Cadastral vs Reported Property Values
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Correlation is 0.948.

Note: Reported value is the reported purchase price per room as observed in the Multipurpose survey in 2014, for properties bought after 2005
(both the purchase price and year are reported). The cadastral value is the average residential property value per m2 in the locality in that year.
Prices are averaged over the period, and normalized so that each variable has mean one.
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Figure A.9: Engel Curves for Car Ownership and Housing

(a) Car Ownership
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Data is from 1995 Mobility Survey.

(b) Housing Expenditure
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Data covers 2005-2014. Income is predicted from a regression of age bins interacted with (i) education,
(ii) occupation and (iii) gender dummies. Housing expenditure includes rents; only renters included.

Figure A.10: Computed vs Observed Commute Times

(a) Buses
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Regression slope is 0.522 in 1995 with an R2 of 0.307, and 0.715 in 2015 with an R2 of 0.406.

(b) Cars
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Regression slope is 0.723 in 1995 with an R2 of 0.373, and 0.746 in 2015 with an R2 of 0.357.

(c) TransMilenio
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Regression slope is 0.657 in 2005 with an R2 of 0.308, and 0.713 in 2015 with an R2 of 0.261.

Note: Figures plot the average reported trip time between pairs of UPZs in the Mobility Survey versus the times computed in ArcMap using
the pre speeds for 1995 and post speeds for 2015. Only trips to and from work during rush hour included. Marker size is proportional to the
number of commuters in each pairwise combination (reported coefficients from regressions weighted by this number).
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Figure A.11: Instruments

(a) Raw Land Use Map 1980 (b) Cost Raster

(c) LCP Instrument

Least Cost Paths
TransMilenio System 2006

(d) Tram Instrument

Tram Route 1921
Tram Route 1921 Extended
TransMilenio System 2006
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C Using A Special Case of the Model to Derive Sufficient Statistics for the

Impact of Transit Infrastructure on Economic Activity

This section considers a special case of the model where there is one type of worker and firm, no fixed element

of expenditure or income and a fixed allocation of floorspace to residential and commercial use. For simplicity, I

assume workers make a joint decision over home and workplace but this is later relaxed to have separate decisions

as in the main model. This special case is shared by a wider class of quantitative urban models. Section C.1 sets

up and characterizes this simple model from scratch, and shows it admits a reduced form representation where

changes in endogenous variables can be written as log-linear functions of changes in CMA. Section C.2 shows that

(i) the change in CMA and elasticities of economic activity to CMA turn out to be sufficient statistics that speak to

the impact of transit infrastructure on aggregate outcomes (such as house prices, output and welfare) as well as the

reorganization of activity across space. Section C.5 derives a relationship between first order welfare effects in this

class of general equilibrium models and the value of time savings approach typically used to evaluate gains from

transit infrastructure. Section C.8 provides proofs for the results in this section.

C.1 A Simple Quantitative Urban Model

Setup. I consider a simple quantitative model of a city in the spirit of Ahlfeldt et. al. (2015) and Allen et. al. (2015).

There are i ∈ I locations that differ in their exogenous amenities ūi, productivities Āi, residential and commercial

floorspace supplies HRi, HFi and the time tij it takes to commute to any other location.53 A continuum of workers

with mass L̄ choose where to live and work and have Cobb-Douglas preferences over a freely-traded numeraire

good and housing. Commuting reduces effective labor supply at workplace so that an individual living in i and

working in j receives income wj/dij , where dij = exp(κtij) converts commute times into commute costs. In each

location, a representative firm produces a freely traded variety under perfect competition that are aggregated by

consumers in CES fashion to form the final numeraire good.

Individuals. Indirect utility across pairs of residential and employment locations (i, j) is given by

Uij(ω) =
uiwjr

β−1
Ri

dij
ϵij(ω), (21)

where ϵij(ω) is an idiosyncratic productivity for worker ω on commute (i, j), 1−β is the expenditure share on hous-

ing, and ui is the amenity enjoyed by residents who live in i. To allow for the possibility of local spillovers, amenities

depend on both exogenous location characteristics ūi and the number of residents through ui = ūiL
µU

Ri . Workers

choose the commute pair that maximizes their utility. Assuming these are drawn iid from a Frechet distribution

with shape parameter θ yields a simple expression for the number of commuters for each live-work pair

Lij = L̄Ū−θ

(
uiwjr

β−1
Ri

dij

)θ

, (22)

53Appendix G shown housing supply was unaffected by TransMilenio, so I consider these as fixed location characteristics.
This assumption is relaxed in Section 5.3. Appendix G also shows that there were no significant relative changes in car and bus
speeds along routes most affected by TransMilenio, so I assume travel times are fixed in the baseline model. This is relaxed in
Panel C of Table 6.
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where Ū = γ
[∑

ij(uiwjr
β−1
Ri /dij)

θ
]1/θ

is average utility, γ = Γ
(
θ−1
θ

)
and Γ(·) is the Gamma function. The supply of

residents and workers to each location can be computed by summing these flows over all destinations and origins

respectively to get

LRi = L̄Ū−θ
(
uir

β−1
Ri

)θ
ΦRi (23)

LFj = L̄Ū−θwθ
jΦFj . (24)

The ΦRi and ΦFi terms are what I refer to as commuter market access terms. Residential commuter market

access (RCMA) ΦRi =
∑

j(wj/dij)
θ reflects residents’ access to well-paid jobs from location i. Firm commuter

market access (FCMA) ΦFj =
∑

i(uir
β−1
Ri /dij)

θ reflects firms’ access to workers from location j (i.e. being close to

locations with high amenities or low rents). The resident supply curve (23) therefore tells us that more residents will

move to locations with high amenities, low house prices, and better access to well-paid jobs through the commuting

network. The labor supply curve (24) tells us that firms will attract more workers to locations with high wages and

better access to workers via the commuting network.

The supply of effective labor units to a location can be computed by leveraging that, under the Frechet dis-

tribution, the average productivity of workers who have chosen (i, j) is inversely related to the share of workers

choosing that pair ϵ̄ij ∝ πij
−1/θ where πij = Lij/L̄. Total effective labor supply is simply L̃Fj = L̄

∑
i π

θ−1
θ

ij /dij ,

which simplifies to

L̃Fj = L̄Ū−(θ−1)wθ−1
j Φ̃Fj (25)

where Φ̃Fj =
∑

i(uir
β−1
Ri )θ−1d−θ

ij is adjusted FCMA capturing access to effective units of labor.

Consumers spend a constant fraction 1− β on housing, so that residential floorspace (inverse) demand is given

by

rRi =
1− β

HRi
ȳiLRi, (26)

where ȳi ≡ Φ
1/θ
Ri L

−1/θ
Ri is average income of residents in i.54

Firms. The production side of the model assumes an Armington structure with no trade costs. In each location, a

representative firm produces a differentiated variety using the Cobb-Douglas technology Yi = AiL̃
α
FiH

1−α
Fi . As for

amenities, I allow for the possibility of productivity externalities of the form Ai = ĀiL̃
µA

Fi .55 Solving firms’ profit

maximization problem delivers labor demand

L̃Fi =
1

α
w

α(1−σ)−1
i Aσ−1

i r
(1−σ)(1−α)
Fi E (27)

where E =
∑

i ȳiLRi is aggregate expenditure and σ is the elasticity of demand across varieties. Firm (inverse)

54See Appendix C.8.4 for a derivation. The model with separate residential and employment location decisions covered in
Appendix C.6 has the more familiar form ȳi ≡ Φ

1/θ
Ri .

55Given evidence on highly localized spatial spillovers (Rossi-Hansberg et. al. 2010; Ahlfeldt et. al. 2015), I do not allow for
spillovers across locations given the size of census tracts. Previous versions of the paper show how the regression framework in
that model still holds but outcomes depend both on a location’s own CMA and those nearby.
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demand for commercial floorspace is given by

rFi =

(
Aσ−1

i w
−α(σ−1)
i Pσ−1E

(1− α)HFi

) 1
1+(σ−1)(1−α)

(28)

Equilibrium. Given model parameters {α, β, σ, θ, κ, µU , µA} and location characteristics {HRi, HFi, tij , ūi, Āi}, an

equilibrium of the model is a vector {LRi, L̃Fj , wj , rRi, rFj , Ū} such that (i) the supply of residents and labor is

consistent with worker optimality (23) and (25), (ii) the demand for labor is consistent with firm optimality (27),

(iii) demand for floorspace is consistent with firm and worker optimal and equals supply (26) and (28) and (iv) the

population of the city L̄ is fixed, and welfare Ū is given by Ū = γ
[∑

ij(uiwjr
β−1
Ri /dij)

θ
]1/θ

.56

C.2 Sufficient Statistics for Impacts of Transit Infrastructure

The following proposition shows how the model and related extensions admit a simple reduced form and sufficient

statistics approach to quantify the impacts of changes in transit infrastructure.

Proposition 1. Consider a change in commute costs from d to d′, and let x̂ ≡ x′/x denote relative changes in a variable

between the pre- and post-period. Then

Part 1: Reduced Form. The model yields a reduced form where endogenous variables can be written as log-linear functions

of CMA as

ln ŷi = βR ln Φ̂Ri + β̃1,F ln Φ̂Fi + β̃2,F ln ˆ̃ΦFi + ei

≈ βR ln Φ̂Ri + βF ln Φ̂Fi + ei

where yi = [LRi, rRi, rFi, LFi] and ei is a vector of structural residuals. βF and βR have zero elements in the first and

last two entries respectively, so this is a system of 4 univariate regressions yielding 4 coefficients βLR
, βrR , βrF , βLF

. Unique

(to-scale) values of the CMA terms ΦRi,ΦFi can be computed given data {LRi, LFi, dij} and the commuting elasticity θ.

While the first line holds exactly (given the values for Φ̂Ri, Φ̂Fi,
ˆ̃ΦFi which also depend on L̂Ri, L̂Fi), the second lines uses the

first-order approximation ln ˆ̃ΦFi ≈ θ−1
θ lnΦFi around d−θ

ij = 0.

Part 2: Relative Impacts of Transit Infrastructure. Assuming that exogenous, location-specific characteristics are un-

changed by the infrastructure, relative changes in endogenous variables ˆ̂yi ≡ ŷi

/
(
∏

r ŷi)
1/I can be computed using (i)

estimates of βLR
, βrR , βrF , βLF

, θ, (ii) data on the initial distribution of economic activity {LRi, LFi, dij} and (iii) data on the

change in commute costs {d̂ij}.

Part 3: Level Impacts of Transit Infrastructure. Level changes in endogenous variables ŷi and endogenous constants
ˆ̄L, ˆ̄U can be computed from the relative changes obtained in part 2 with (i) an assumption on population mobility between the

city and the rest of the country, and (ii) values for σ, β.

Part 4: Isomorphisms. Parts 1 and 2 apply to a more general class of models which feature (i) a gravity equation for com-

mute flows and (ii) an equilibrium that can be written as a system ofK equations inK endogenous variables {y1i, . . . , yki}Ii=1

56Existence of the equilibrium and conditions for uniqueness were established in a previous version of the paper. Alternative
assumptions over population mobility between Bogotá and the rest of the country are covered in Proposition 1.

25



of the form
K∏

k=1

yαkh

ki = λhΦ
bRh
RiΦ

bFh
Fieih for h = 1, . . . ,K.

These models will yield the same counterfactual changes in outcomes (relative to city-wide averages) as those from the base-

line model, given estimates of βR, βF , θ. This class includes models with endogenous firm location choice, Eaton and Kor-

tum production, capital in the production function, endogenous housing supply, leisure, preference rather than productivity

shocks, and alternative residential and employment supply elasticities and timing assumptions. However, the overall level of

changes and changes in endogenous constants will depend on (a subset of) the particular structural parameters of the model

{{αkh}k, bRh , bFh }h, and are not determined by the reduced form elasticities alone.

The implications of these results are now discussed in turn.

Reduced Form Representation. The first part of Proposition 1 shows that the transit network only matters for

equilibrium outcomes through the two CMA variables. In fact, the change in the entire distribution of economic

activity across the city between two periods depends only on the change in CMA as well as a structural residual that

reflects changing location fundamentals (productivities, amenities and floorspace supplies).57 This system reduces

to a system of 4 univariate regressions, where residential outcomes depend on RCMA and commercial outcomes

depend on FCMA.

These CMA terms can be easily recovered using data on residential populations, employment, commute costs

and the commuting elasticity θ. This ensures estimation of the reduced form is straightforward, even if CMA is not

directly observed in the data. The proof of Proposition 1 shows that the CMA terms are the unique to-scale solution

to the system given in (18) and (19) in the paper. It also discusses the approximation used collapse the reduced form

that contains three CMA terms ΦRi,ΦFi, Φ̃Fi into one with just ΦRi,ΦFi. This choice is made both for parsimony

and empirical feasibility (the correlation between ΦFi and Φ̃Fi is 0.98 in the data). The unapproximated reduced

form is used to conduct counterfactuals, with a simple adjustment made to the coefficients from the approximated

reduced form to map them to the coefficients from the unapproximated system (see proof in Appendix C.8.1 for

details).

Counterfactual Impacts of Transit Infrastructure. Part 2 of Proposition 1 shows that relative changes in endoge-

nous variables across the city in response to a change in commute costs can be computed using data on the initial

distribution LRi, LFi, dij , the change in commute costs d̂ij , the commuting elasticity θ, and the reduced form pa-

rameters βLR
, βrR , βrF , βLF

. In other words, these data and parameters are sufficient statistics for the change in

economic activity across the city in response to changes in transit infrastructure. As shown in the proof, the elastici-

ties and the change in CMA are the sufficient statistics; the data on initial economic activity and changes in commute

costs are necessary to compute the change in CMA.

Part 3 shows that computing both the level change in endogenous variables as well as the change in equilibrium

constants requires slightly more structure. These require an assumption on population mobility into the city from

the rest of the country, and values for two parameters σ and β that cannot be estimated from the reduced form.

These must be specified in some other way by the researcher, for example by calibrating to external values or

aggregate moments.
57The contents of the residual and reduced form parameters are outlined in Appendix C.7. The residual contains changes

in unobserved amenities and residential floorspace for residential outcomes, and changes in unobserved productivities and
commercial floorspace for commercial outcomes.
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Part 4 shows that some of these results apply more generally to a wider class of models which feature a gravity

equation for commute flows and a log-linear equilibrium representation. Despite having different underlying struc-

tural parameters, these models yield the same log-linear reduced form. Since part 2 requires only values of these

reduced form elasticities to compute relative changes in activity across the city in response to changes in the transit

network, they yield the same (relative) counterfactual impacts as the baseline model. This result is particularly use-

ful because the researcher does not need to take a stand on which particular modeling assumption is true; each will

yield the same counterfactual impact on relative outcomes as the baseline model conditional on the reduced form

estimates βR,βF . Where the modeling assumptions do come into play is in determining the overall level of changes

and aggregate effects (such as welfare). As the example in part 3 shows, this depends on the underlying structural

parameters of the model. However if the researcher is ready to take a stand on the value of those parameters in

their model, then these aggregate impacts can be computed using the procedure shown in the proof of part 3 and

the values of the particular structural parameters of that model.

C.3 Estimating Demand for Travel Modes

Standard results on GEV distributions imply that the choice probabilities are

πm|ija = πk|ija × πm|ijka

=

(∑
n∈Bk

exp
(
bn − κ

λk
tijn

))λk

∑
k′

(∑
n∈Bk′ exp

(
bn − κ

λk′
tijn

))λk′
×

exp
(
bm − κ

λk
tijm

)
∑

n∈Bk
exp

(
bn − κ

λk
tijn

)
where bm ≡ −b̃m/λk. That is, the probability a worker chooses mode m can be decomposed into the probability

they choose the nest containing m and the probability they choose the mode from the options available in that nest.

This is estimated via MLE as described in the main text.

C.4 Estimating the Commute Elasticity θ

Taking logs and first differences of the expression for commute flows (22) yields a gravity equation relating the

change in commute flows to changes in commute times

lnLijt = αij + γit + δjt − θκtijt + εijt, (29)

where αij , γit and δjt are origin-destination, origin-year and destination-year fixed effects. While other estimation

approaches typically leverage cross- sectional variation, this paper uses the change in commute times induced by

TransMilenio to difference out time-invariant characteristics potentially correlated with commute times. Changes

in origin- or destination- specific unobservables—such as amenities and productivities—are absorbed in the fixed

effects.

Commute times tijt are formed using the same mode choice model as in the general model, but incorporating

car ownership according to an exogenous probability rather than an endogenous decision. Workers become car

owners according to a Bernoulli distribution with parameter ρcar. Expected utility conditional on car ownership is

Uijm|a(ω) =
uiwjr

β−1
Ri ϵij(ω)

exp (κtijm + υijm(ω))
.
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Expected utility prior to drawing the mode-specific preference shocks shocks is given by

Ea

[
max
m

{
Uijm|a(ω)

}]
= uiwjr

β−1
Ri ϵij(ω)×

[
ρcarE

[
max

m∈M1

{1/dijm(ω)}
]
+ (1− ρcar)E

[
max

m∈M0

{1/dijm(ω)}
]]

=
uiwjr

β−1
Ri ϵij(ω)

exp (κt̄ij)

where

tij = − 1

κ
ln [ρcar exp (−κt̄ij1) + (1− ρcar) exp (−κt̄ij0)]

where t̄ij0 = −λ
κ
ln

∑
m∈BPublic

exp
(
bm − κ

λ
tijm

)
t̄ij1 = − 1

κ
ln (exp(bcar − κtijCar) + exp (κt̄ij0)) .

The expressions t̄ij0, t̄ij1 are exactly the same car-ownership-specific commute time indices as in the baseline

model. The only difference is that they are averaged using the parameter ρcar which reflects the probability of

owning a car. I then compute t̄ijt for different years, where variation over time is induced by the changes in the

TransMilenio network. I set ρcar = 0.181 equal to the share of car owners in 2015.

The estimates for (29) are presented in Table A.6. Columns 1 and 2 run PPML regressions to account for the

presence of zeros in the data. Controlling for route observables interacted with year fixed effects implies a value of

θ = 3.398 reported in Table 1. Column 3 runs the same regression via OLS which do not account for pairs with zero

commute flows, finding similar but mildly smaller estimates. The last column instruments for the change in travel

times using the instrument from Section 5 for travel times in the post-period, delivering a larger estimate.

C.5 First Order vs Equilibrium Effects

The standard approach to evaluate the gains from transit infrastructure is based on the Value of Travel Time Savings

(e.g. Small and Verhoef 2007), in which its benefits are given by minutes saved times the value of time. The following

proposition shows that under certain conditions, this is precisely the first order welfare impact from a change in

infrastructure in the full general equilibrium model.

Proposition 2. In a version of the baseline model with (i) no amenity or productivity spillovers, (ii) preference shocks over

residential locations, (iii) workers owning an equal share of all floorspace and (iv) a labor income tax 1/(1 + θ) redistributed

lump sum, the elasticity of welfare to a change in commute costs is

d ln Ū = −αβκ
∑
ij

wijLij∑
rs wrsLrs

dtij , (30)

where wij is average labor income of commuters along pair (i, j).

The proof of the proposition first establishes that under these conditions the equilibrium is efficient. An appli-

cation of the envelope theorem then shows that—to a first order—only the time savings from new infrastructure

matter for welfare. This is simply proportional to a labor income-weighted average of the commute time reductions,

scaled by κ and αβ. The former converts commute times to commute costs, while the latter reflects that a share of
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the gains go to floorspace owners rather than directly to workers.58 Lastly, as explained in the proof of the propo-

sition, technical reasons require the restrictions (ii)-(iv) to be imposed to derive this result. However, simulations

of small shocks in the model from Section C.1 with only condition (i) imposed confirm this expression correctly

captures the first order welfare effects in that model as well.

C.6 Examples of Isomorphic Models in Proposition 1

Sorting of Individual Entrepreneurs. Consider a production side where each variety is produced by a monopolist

who can choose where to locate in the city. The entrepreneur has the same Cobb-Douglas production function over

labor and commercial floorspace, so profits are a fraction 1/σ of sales. Entrepreneurs have idiosyncratic preferences

for producing in each block so that the return from locating in j is given by

Vj(ω) = πjϵj(ω)

where πj = σ̄
(
wα

j r
1−α
Fj /Aj

)1−σ

E

where σ̄ ≡ σ−σ(σ − 1)−(σ−1) and ϵj(ω) is the preference of entrepreneur ω in to produce in j. If these preferences

are drawn from a Frechet distribution with shape θF > 1, then (normalizing the mass of firms to 1) the number of

firms producing in j is

Nj =

(
Aj/w

α
j r

1−α
Fj

)θF (σ−1)

∑
s

(
As/wα

s r
1−α
Fs

)θF (σ−1)

The wage bill is a fraction ασ−1
σ of sales so wjℓj = α (σ/(σ − 1))

−σ
(
wα

j r
1−α
Fj /Aj

)1−σ

E. Since total labor demand is

simply L̃Fj = Njℓj , we find that

L̃Fj = α (σ/(σ − 1))
−σ

Ū
−1/θF (σ−1)
F ×A

(1+θF )(σ−1)
j w

−(1+(1+θF )α(σ−1))
j r

−(σ−1)(1−α)(1+θF )
Fi E

where ŪF =
[∑

s

(
As/w

α
s r

1−α
Fs

)θF (σ−1)
]1/θF (σ−1)

. Using the same logic as for labor, demand for commercial floorspace

is

HFj = (1− α) (σ/(σ − 1))
−σ

Ū
−1/θF (σ−1)
F ×A

(1+θF )(σ−1)
j w

−(1+θF )α(σ−1)
j r

−(σ−1)(1−α)(1+θF )−1
Fi E.

Since floorspace is fixed, this is the commercial floorspace clearing condition.

Only the labor demand and commercial floorspace market clearing conditions have changed. Since they have

the same log-linear parametric structure, the same reduced form representation as in the baseline model will hold.

To see how, the equilibrium system becomes

LRi = L̄Ū−θ
(
uir

β−1
Ri

)θ
ΦRi

LFj = L̄Ū−θwθ
jΦFj

L̃Fj =
(
L̄Ū−θ

) θ−1
θ wθ−1

j Φ̃Fj

L̃Fj = α (σ/(σ − 1))
−σ

Ū
−1/θF (σ−1)
F w

(1+θF )α(1−σ)−1
j A

(1+θF )(σ−1)
j r

(1−α)(1−σ)(1+θF )
Fi E

rRi =
1− β

HRi
Φ

1/θ
Ri L

θ−1
θ

Ri

58While these gains ultimately make their way back to workers who own the housing stock, these equilibrium price effects do
not matter to a first order.
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rFi =

(
(1− α) (σ/(σ − 1))

−σ
Ū

−1/θF (σ−1)
F

A
(1+θF )(σ−1)
j w

−(1+θF )α(σ−1)
j E

HFi

) 1
1+(σ−1)(1−α)(1+θF )

where the CMA definitions are unchanged. Using the third line to substitute out for wages and ignoring the sec-

ond line (which pins down LFj given the other variables of the model), we arrive at a system of 4 equations in

{LRi, L̃Fi, rRi, rFi} given {ΦRi, Φ̃Fi}

L1−θµU

Ri r
θ(1−β)
Ri = λ1ΦRiū

θ
i

L
− θ−1

θ

Ri rri = λ2Φ
1/θ
Ri H

−1
Ri

r
1+(σ−1)(1−α)(1+θF )
Fi L̃

(σ−1)
(

α−µA(θ−1)

θ−1

)
(1+θF )

Fi = λ3
Ā

(σ−1)(1+θF )
i Φ̃

α(σ−1)
θ−1 (1+θF )

Fj

HFi

r
(σ−1)(1−α)(1+θF )
Fi L̃

θ+(1+θF )(σ−1)[α−µU (θ−1)]
θ−1

Fj = λ4Ā
(1+θF )(σ−1)
j Φ̃

1+(1+θF )α(σ−1)

θ−1

Fi

where the (endogenous) constants are given by λ1 ≡ L̄Ū−θ, λ2 = 1−β, λ3 ≡ (1−α) (σ/(σ − 1))
−σ

Ū
−1/θF (σ−1)
F

(
L̄Ū−θ

)−α(σ−1)(1+θF )

θ E,

and λ4 ≡ α (σ/(σ − 1))
−σ

Ū
−1/θF (σ−1)
F

(
L̄Ū−θ

)− 1+(1+θF )α(σ−1)

θ E. This is of the same parametric form as the system

(51), and thus admits the same reduced form as the baseline model. To see this explicitly for this example, write the

system in changes and take logs to get


1− θµU θ(1− β) 0 0

− θ−1
θ 1 0 0

0 0 1 + (σ − 1)(1− α)(1 + θF ) (σ − 1)
(

α−µA(θ−1)
θ−1

)
(1 + θF )

0 0 (σ − 1)(1− α)(1 + θF )
θ+(1+θF )(σ−1)[α−µU (θ−1)]

θ−1



ln L̂Ri

ln r̂Ri

ln r̂Fi

ln ˆ̃LFi



=


1
1
θ

0

0

 ln Φ̂Ri +


0

0
α(σ−1)(1+θF )

θ−1
1+(1+θF )α(σ−1)

θ−1

 ln ˆ̃ΦFi +


θ ln ˆ̄iu+ ln ˆ̄L ˆ̄U−θ

− ln ĤRi

(σ − 1)(1 + θF ) ln
ˆ̄Ai − ln ĤFi − α(σ−1)(1+θF )

θ ln ˆ̄L ˆ̄U−θ + ln Ê − 1
θF (σ−1) ln

ˆ̄UF

(σ − 1)(1 + θF ) ln
ˆ̄Ai − 1+(1+θF )α(σ−1)

θ ln ˆ̄L ˆ̄U−θ + ln Ê − 1
θF (σ−1) ln

ˆ̄UF


By the results of part (iv), the relative impacts of changes in the commuting network are the same in this model

as the baseline model given estimates of θ and the reduced form elasticities. (Note the reduced form elasticities

have the same parametric form in this model as the baseline, since βF ,βR have zero entries in the first and last two

entries respectively.) The level effects would differ, however, since these depend on the structural parameters that

appear in the A matrix and the error term e.

Endogenous Housing Supply. Consider an extension of the model in which housing floorspace for each type

of floorspace is produced using land Ti and capital Ki according to a Cobb-Douglas production function Hi =

T 1−η
i Kη

i . Capital is freely traded across the city with price pK . Each unit of land is owned by an atomistic developer

who chooses hi = kηi units of housing to construct per unit of land, where ki units of capital are used per unit

of land. Profit maximization by developers yields a density of development hi = (ηri/pK)1/(1−η). Total housing

supply is therefore

HRi = Ti

(
ηrRi

pK

) 1
1−η

and HFi = Ti

(
ηrFi

pK

) 1
1−η

All that changes in the model is that HRi, HFi are now endogenous since they depend on floorspace prices.
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Adding these equations into the system and rearranging yields

L1−θµU

Ri r
θ(1−β)
Ri = L̄Ū−θΦRiū

θ
i

L
− θ−1

θ

Ri r
1+ 1

1−η

Ri = (1− β)(pK/η)
1

1−η Φ
1/θ
Ri T

−1
i

r
1+(σ−1)(1−α)+ 1

1−η

Fi L̃
(σ−1)(α−µA(θ−1))

θ−1

Fi = (1− α)(pK/η)
1

1−η Āσ−1
i

((
L̄Ū−(θ−1)

)
Φ̃Fj

)α(σ−1)
θ−1

T−1
i E

r
(σ−1)(1−α)
Fi L̃

θ+(σ−1)(α−µA(θ−1))

θ−1

Fi = α
((
L̄Ū−(θ−1)

)
Φ̃Fj

) 1+α(σ−1)
θ−1

Āσ−1
i E

This is of the same parametric form as the system (51). Writing the system in log changes yields
1− θµU θ(1− β) 0 0

− θ−1
θ 1 + 1

1−η 0 0

0 0 1 + (σ − 1)(1− α) + 1
1−η

(σ−1)(α−µA(θ−1))
θ−1

0 0 (σ − 1)(1− α) θ+(σ−1)(α−µA(θ−1))
θ−1



ln L̂Ri

ln r̂Ri

ln r̂Fi

ln ˆ̃LFi



=


1
1
θ

0

0

 ln Φ̂Ri +


0

0
α(σ−1)
θ−1

1+α(σ−1)
θ−1

 ln ˆ̃ΦFi +


θ ln ˆ̄ui + ln ˆ̄L− θ ln ˆ̄U

− ln T̂i

(σ − 1) ln ˆ̄Ai − ln ĤFi +
α(σ−1)
θ−1

(
ln L̂− (θ − 1) ln ˆ̄U

)
+ ln Ê

(σ − 1) ln ˆ̄Ai +
1+α(σ−1)

θ−1

(
ln L̂− (θ − 1) ln ˆ̄U

)
+ ln Ê


assuming the cost of capital pK is unaffected by the system. This model admits exactly the same parametric

form of regression equations as the baseline model, and so the results of part 4 apply. Note this model allows

the share of floorspace used for commercial purposes in a census tract to respond to a change in commute costs.

This would occur if the price of commercial floorspace changed relative to that of residential floorspace, since

ϑ̂i =
r̂
1/(1−η)
Fi

ϑir̂
1/(1−η)
Fi +(1−ϑi)r̂

1/(1−η)
Ri

where ϑi ≡ HFi/(HFi +HRi) is the share of floorspace allocated to commercial use in

the initial equilibrium.

Eaton and Kortum. In the Eaton and Kortum (2002) setup, there is a continuum of goods ω ∈ [0, 1]. Each loca-

tion has idiosyncratic draw for each good from a Frechet distribution with location parameter Aj > 0 and shape

θF > 1. There is perfect competition so that pj(ω) = wj/zj(ω). Goods market clearing implies that sales are given

by

Xj =
∑
i

(
wα

j r
1−α
Fj /Aj

)−θF

∑
s

(
wα

s r
1−α
Fs /As

)−θF
Ei =

(
wα

j r
1−α
Fj

)−θF
AθF

j P θFE

This yields the same system of equations as in the baseline model, with σ− 1 replaced with θF , and thus the results

of part 4 apply.

Capital. Consider an extension of the model in which firms can invest in capital to respond to changes in tran-

sit networks. Suppose firms use the production function Yi = AiL̃
αL

FiH
αH

Fi K
αK

Fi . Capital is freely traded across the

city and available at price pK . Profit maximization implies firms spend constant fractions of sales on each factor,

with factor demands given by
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wiL̃Fi =
1

αL

(
wαL

i rαH

Ri p
αK

K

Ai

)1−σ

E

rFiHFi =
1

αH

(
wαL

i rαH

Ri p
αK

K

Ai

)1−σ

E

pKKFi =
1

αK

(
wαL

i rαH

Ri p
αK

K

Ai

)1−σ

E.

We assume Colombia is a small open economy so that the price of capital is pinned down in international capital

markets, i.e. pK is a constant exogenous to the model. Only the condition for labor demand and commercial

floorspace market clearing change. The equilibrium system is given by a system of 6 × I equations in as many

unknowns (given {ΦRi,ΦFi, Φ̃Fi}, themselves auxiliary variables of these same unknowns in the same system as

the baseline model)

LRi = L̄Ū−θ
(
uir

β−1
Ri

)θ
ΦRi

LFj = L̄Ū−θwθ
jΦFj

L̃Fj =
(
L̄Ū−θ

) θ−1
θ wθ−1

j Φ̃Fj

L̃Fi =
1

αL
w

αL(1−σ)−1
i Aσ−1

i r
αH(1−σ)
Fi p

αK(1−σ)
K E

rRi =
1− β

HRi
Φ

1/θ
Ri L

θ−1
θ

Ri

rFi =

(
Aσ−1

i w
−αL(σ−1)
i p

αK(1−σ)
K E

αHHFi

) 1
1+αH (σ−1)

Note that with these solved for, capital demand can be recovered using the demand equation above. This is of the

same parametric form as the system (51). Writing in relative changes and taking logs yields
1− θµU θ(1− β) 0 0

− θ−1
θ 1 0 0

0 0 1 + αH(σ − 1) (σ−1)(αL−µA(θ−1))
θ−1

0 0 αH(σ − 1) θ+(σ−1)(αL−µA(θ−1))
θ−1



ln L̂Ri

ln r̂Ri

ln r̂Fi

ln ˆ̃LFi



=


1
1
θ

0

0

 ln Φ̂Ri +


0

0
αL(σ−1)

θ−1
1+αL(σ−1)

θ−1

 ln ˆ̃ΦFi +


θ ln ˆ̄iu+ ln ˆ̄L− θ ln ˆ̄U

− ln ĤRi

(σ − 1) ln ˆ̄Ai − ln ĤFi − α(σ−1)
θ

(
ln L̂− θ ln ˆ̄U

)
− αK(σ − 1) ln p̂K + ln Ê

(σ − 1) ln ˆ̄Ai − α(σ−1)+1
θ

(
ln L̂− θ ln ˆ̄U

)
− αK(σ − 1) ln p̂K + ln Ê


The only changes from the baseline model are that the labor and housing elasticities have been relabeled, and the

change in the price of capital has entered the residual. The results of part 4 apply.

Leisure. We consider an extension of the model where consumers derive utility over goods, housing and leisure.

When preferences are Cobb-Douglas, the individual’s problem is

max
C,H,L

uiC
αHβLγϵij(ω) s.t. C + rRiH + wjL = wj(1− tij)
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Solving for commute flows yields

Lij =
(
uiw

1−γ
j r−β

Ri /dij

)θ
where dij ≡ 1

1−tij
. This has the same parametric form as the baseline model, but with alternative exponents on

wages and house prices in the resident and labor supply terms and CMA definitions. The equilibrium can once

again be written in the parametric form as the system (51), and the results of part 4 apply.

Preference Shocks. We consider an extension of the model in which consumers have preference rather than produc-

tivity shocks over each commute. Average income becomes ȳi =
∑

j πj|iwj where πj|i = (wj/dij)
θ /∑

s (ws/dis)
θ

is the probability of commuting to j conditional on living in i. Effective labor supply is simply LFj . The remaining

equations of the model are unchanged. The equilibrium system becomes

LRi = L̄Ū−θ
(
uir

β−1
Ri

)θ
ΦRi

LFj = L̄Ū−θwθ
jΦFj

LFi =
1

α
w

α(1−σ)−1
i Aσ−1

i r
(1−σ)(1−α)
Fi E

rRi =
1− β

HRi
ȳiLRi

rFi =

(
Aσ−1

i w
−α(σ−1)
i E

(1− α)HFi

) 1
1+(σ−1)(1−α)

Approximating ȳi around the point d−θ
ij = 0 yields ˆ̄yi ≈ Φ̂

1/θ
Ri , so the endogenous variables can again be expressed as

log-linear functions of CMA and structural residuals. In particular, taking changes and logs yields a system exactly

the same as the baseline model, but with the second entry in the first column of the A matrix changing from − θ−1
θ

to −1. The equilibrium can once again be written in the parametric form as the system (51), and the results of part

4 apply.

Alternative Labor and Residential Supply Elasticities and Timing Assumptions. We consider an extension of

the model where commuters draw separate shocks over workplace and residence locations. Indirect utility across

pairs of residential and employment locations (i, j) is given by

Uij(ω) =
uiwjr

β−1
Ri

dij
ϵj(ω)νi(ω),

where ϵj(ω) is a productivity shock for employment in location j drawn from a Frechet distribution with shape θ

and νi(ω) is a preference shock for living in location i drawn from a Frechet distribution with shape η. Whichever

choice is made first, the supply and residents and workers to locations is given by

LRi = L̄Ū−θ
(
uir

β−1
Ri Φ

1/θ
Ri

)η
LFj = L̄Ū−θwθ

jΦFj

where ΦRi =
∑

j(wj/dij)
θ as before, but now ΦFj =

∑
i(uir

β−1
Ri )ηd−θ

ij Φ
η
θ −1

Ri . While these CMA terms look different

from those in the original model, substituting the resident and labor supply curves back into them yield the same
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system of equations (18)-(19) defining CMA. The remaining model equations remain log-linear in endogenous vari-

ables and ΦRi and ΦFi (noting that now expected income is simply ȳi = γΦ
1/θ
Ri ). These results are independent

of whether employment or residential locations are chosen first. The equilibrium can once again be written in the

parametric form as the system (51), and the results of part 4 apply.

C.7 Reduced Form Coefficients and Residuals

This section makes explicit the structural content of the reduced form elasticities and residuals.

Residuals. As shown in the proof of Proposition 1, the residuals are given by ei = A−1ẽi. Applying

A−1 =


1

β+θ(1−β−µU ) − θ(1−β)
β+θ(1−β−µU ) 0 0

θ−1
θ

1
β+θ(1−β−µU )

θ(1−µU )
β+θ(1−β−µU ) 0 0

0 0 θ+(σ−1)(α−(θ−1)µA)
θσ−(θ−1)(σ−1)(α+µA) − (σ−1)(α−(θ−1)µA)

θσ−(θ−1)(σ−1)(α+µA)

0 0 − (1−α)(θ−1)(σ−1)
θσ−(θ−1)(σ−1)(α+µA)

(θ−1)(σ(1−α)+α)
θσ−(θ−1)(σ−1)(α+µA)


to the residual vector ẽi yields

ei =



1
β+θ(1−β−µU )

[
θ ln ˆ̄ui + ln ˆ̄L− θ ln ˆ̄U

]
+ θ(1−β)

β+θ(1−β−µU ) ln ĤRi

θ−1
θ

1
β+θ(1−β−µU )

[
θ ln ˆ̄ui + ln ˆ̄L− θ ln ˆ̄U

]
− θ(1−µU )

β+θ(1−β−µU ) ln ĤRi

θ
θσ−(θ−1)(σ−1)(α+µA)

[
(σ − 1) ln ˆ̄Ai − θ+(σ−1)(α−(θ−1)µA)

θ ln ĤFi +
(σ−1)(α+µA)

θ

(
ln L̂− (θ − 1) ln ˆ̄U

)
+ ln Ê

]
θ−1

θσ−(θ−1)(σ−1)(α+µA)

[
(σ − 1) ln ˆ̄Ai +

(1−α)(θ−1)(σ−1)
θ−1 ln ĤFi +

σ
θ−1

(
ln L̂− (θ − 1) ln ˆ̄U

)
+ ln Ê

]


where each entry corresponds to the residual for the specification with LRi, rRi, rFi, L̃Fi as the outcome, respec-

tively. Residuals that vary across observations contain weighted sums of changes in (i) unobserved amenities

and residential floorspace supplies for residential outcomes and (ii) unobserved productivities and commercial

floorspace supplies for commercial outcomes.

CMA Elasticities. Computing βR = A−1bR and βF = A−1bF yields


βLR

βrR
βrF
βLF

 =



β
β+θ(1−β−µU )

1−µU

β+θ(1−β−µU )
1

1+θ
(

σ
σ−1

1
α+µA

−1
)

σ
(σ−1)(α+µA)

1

1+θ
(

σ
σ−1

1
α+µA

−1
)


Rearranging these expressions yields µA = σ

σ−1

/βLF

βrF
− α and µU = 1− β

/βLR

βrR
as referenced in the text.

Given the reduced form estimates and the estimate of θ from the gravity equation, this is a system of 4 equations

in 5 parameters β, µU , σ, α, µA. However, even if one additional parameter is calibrated, these equations cannot be

inverted for the remaining structural parameters. Consider first the system of equations determining β, µU in the

first two lines. This can be rearranged into

β =
θ

θ − 1 + 1
βLR

(1− µU )
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β =
θ − 1

βrR

θ − 1
(1− µU ).

These are two straight lines in the (β, 1−µU ) space with the same intercept (at zero) but different slopes, other than

the knife edge case where θ
θ−1+ 1

βLR

=
θ− 1

βrR

θ−1 in which case there are an infinite number of solutions. For the second

two equations, if α is calibrated to an external value then the system of equations is

µA =
σ

σ − 1

/(
1 +

1− βrF
θ

)
− α

µA =
σ

σ − 1

/(βLF
(θ − 1)

βLF
θ − 1

)
− α.

These are two straight lines in the (µA, σ/(σ − 1)) space with the same intercept but different slopes, other than the

knife edge case where 1 +
1−βrF

θ =
βLF

(θ−1)

βLF
θ−1 in which case there are an infinite number of solutions.

Given that these equations cannot be inverted, one could try to calibrate one parameter (such as α) and jointly

estimate the remaining 5 (including θ) to most closely match the CMA elasticities and the commuting semi-elasticity

in the gravity equation. However, the match will not be exact given the results above. The sufficient statistics

approach has the advantage that the researcher does not need to specify the value of all structural parameters and

can conduct analysis using the commuting semi-elasticity, the CMA elasticities (and σ, β to obtain the overall level

of changes). The researcher also does not need to take a stance on the particular model generating the data, i.e.

what the specific cluster of structural parameters are that determine βR,βF .

C.8 Proofs & Additional Derivations

C.8.1 Proof of Proposition 1

Part 1: Reduced Form. Stacking the equilibrium conditions delivers

LRi = L̄Ū−θ
(
uir

β−1
Ri

)θ
ΦRi

L̃Fj = L̄Ū−(θ−1)wθ−1
j Φ̃Fj

L̃Fi =αw
α(1−σ)−1
i Aσ−1

i r
(1−σ)(1−α)
Fi E

rRi =
1− β

HRi
Φ

1/θ
Ri L

θ−1
θ

Ri

rFi =

(
(1− α)

Aσ−1
i w

−α(σ−1)
i E

HFi

) 1
1+(σ−1)(1−α)

Ū =

[∑
i

(
uiΦ

1/θ
Ri r

β−1
Ri

)θ]1/θ

where E = β
∑

i Φ
1/θ
Ri L

θ−1
θ

Ri is total expenditure, and the CMA equations are

ΦRi =
(
L̄Ū−θ

)−1∑
j

d−θ
ij

LFj

ΦFj
(31)

ΦFj =
(
L̄Ū−θ

)−1∑
i

d−θ
ij

LRi

ΦRi
(32)
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Φ̃Fj =
(
L̄Ū−θ

)− θ−1
θ
∑
i

d−θ
ij

(
LRi

ΦRi

)(θ−1)/θ

(33)

Using the second line to substitute out for wages we arrive at a system of 4 equations in {LRi, L̃Fi, rRi, rFi}

given {ΦRi, Φ̃Fi}

L1−θµU

Ri r
θ(1−β)
Ri = L̄Ū−θΦRiū

θ
i

L
− θ−1

θ

Ri rRi = (1− β)Φ
1/θ
Ri H

−1
Ri

r
1+(σ−1)(1−α)
Fi L̃

(σ−1)(α−µA(θ−1))

θ−1

Fi = (1− α)Āσ−1
i

((
L̄Ū−(θ−1)

)
Φ̃Fj

)α(σ−1)
θ−1

H−1
Fi E

r
(σ−1)(1−α)
Fi L̃

θ+(σ−1)(α−µA(θ−1))

θ−1

Fi = α
((
L̄Ū−(θ−1)

)
Φ̃Fj

) 1+α(σ−1)
θ−1

Āσ−1
i E

Letting x̂ = x′/x denote relative changes across two equilibria, we can take logs and rearrange to get
1− θµU θ(1− β) 0 0

− θ−1
θ 1 0 0

0 0 1 + (σ − 1)(1− α) (σ−1)(α−µA(θ−1))
θ−1

0 0 (σ − 1)(1− α) θ+(σ−1)(α−µA(θ−1))
θ−1


︸ ︷︷ ︸

A


ln L̂Ri

ln r̂Ri

ln r̂Fi

ln ˆ̃LFi


︸ ︷︷ ︸

ln ˆ̃yi

=


1
1
θ

0

0


︸︷︷︸
bR

ln Φ̂Ri +


0

0
α(σ−1)
θ−1

1+α(σ−1)
θ−1


︸ ︷︷ ︸

bF

ln ˆ̃ΦFi +


θ ln ˆ̄ui + ln ˆ̄L− θ ln ˆ̄U

− ln ĤRi

(σ − 1) ln ˆ̄Ai − ln ĤFi +
α(σ−1)
θ−1

(
ln L̂− (θ − 1) ln ˆ̄U

)
+ ln Ê

(σ − 1) ln ˆ̄Ai +
1+α(σ−1)

θ−1

(
ln L̂− (θ − 1) ln ˆ̄U

)
+ ln Ê


︸ ︷︷ ︸

ẽi

(34)

Premultiplying by A−1 delivers the system

ln ˆ̃yi = βR ln Φ̂Ri + βF ln ˆ̃ΦFi + ei

where βR = A−1bR, βF = A−1bF and ei = A−1ẽi. Note that the last two elements of βR are zero as are the first

two elements of βF .59 Since A−1 is block diagonal, the first two elements of ei determining residential outcomes

depend only on ˆ̄ui, ĤRi,
ˆ̄L, ˆ̄U while the second two elements determining commercial outcomes depend only on

ˆ̄Ai, ĤFi,
ˆ̄L, ˆ̄U, Ê. The exact reduced form (34) is the one which is used to conduct counterfactuals in parts 2 and 3.

However, in the data we observeLFi rather than L̃Fi. CombiningLFj = L̄Ū−θwθ
jΦFj and L̃Fj =

(
L̄Ū−(θ−1)

)
wθ−1

j Φ̃Fj

59Note that solving these expressions yields


βLR

βrR

βrF

βLF

 =


β

β+θ(1−β−µU )
1−µU

β+θ(1−β−µU )
1

1+θ
(

σ
σ−1

1
α+µA

−1
)

σ
(σ−1)(α+µA)

1

1+θ
(

σ
σ−1

1
α+µA

−1
)


Manipulating these expressions yields µA = σ

σ−1

/βLF
βrF

− α and µU = 1− β
/βLR

βrR
as referenced in the text.
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yields the following relationship between the two

ˆ̃LFj =

(
L̂Fj

Φ̂Fj

) θ−1
θ

ˆ̃ΦFj .

Substituting this in, we arrive at the following system
1− θµU θ(1− β) 0 0

− θ−1
θ 1 0 0

0 0 1 + (σ − 1)(1− α) (σ−1)(α−µA(θ−1))
θ

0 0 (σ − 1)(1− α) θ+(σ−1)(α−µA(θ−1))
θ


︸ ︷︷ ︸

A


ln L̂Ri

ln r̂Ri

ln r̂Fi

ln L̂Fi


︸ ︷︷ ︸

ln ŷi

=


1
1
θ

0

0


︸︷︷︸
bR

ln Φ̂Ri +


0

0
(σ−1)(α−µA(θ−1))

θ
θ+(σ−1)(α−µA(θ−1))

θ


︸ ︷︷ ︸

bF

ln Φ̂Fi

+


0

0

µA(σ − 1)

µA(θ − 1)(σ − 1)− 1


︸ ︷︷ ︸

b̃F

ln ˆ̃ΦFi +


θ ln ˆ̄ui + ln ˆ̄L− θ ln ˆ̄U

− ln ĤRi

(σ − 1) ln ˆ̄Ai − ln ĤFi +
α(σ−1)
θ−1

(
ln L̂− (θ − 1) ln ˆ̄U

)
+ ln Ê

(σ − 1) ln ˆ̄Ai +
1+α(σ−1)

θ−1

(
ln L̂− (θ − 1) ln ˆ̄U

)
+ ln Ê


︸ ︷︷ ︸

ẽi

(35)

or, after premultiplying by A−1,

ln ŷi = βR ln Φ̂Ri + βF ln Φ̂Fi + β̃F ln ˆ̃ΦFi + ei

This reduced form (35) along with the CMA definitions (31)-(33) hold globally to define a change in endogenous

variables {L̂Ri, r̂Ri, r̂Fi, L̂Fi, Φ̂Ri, Φ̂Fi,
ˆ̃ΦFi} (and analogously the auxiliary variables ˆ̄U, Ê defined as a function of

these variables above) given a change in exogenous (or “forcing”) variables {ˆ̄ui, ˆ̄Ai, ĤRi, ĤFi,
ˆ̄L, d̂ij}. Note that in

counterfactuals, all exogenous variables other than commute costs dij will be held constant.

However, the two FCMA terms, defined in (32) and (33), are very highly correlated in the data (correlation

coefficient of 0.98). To make this regression simpler and to allow for enough residual variation to identify the coef-

ficients on each term, I take a first order approximation of Φ̃Fi around the point d−θ
ij = 0 which yields Φ̃Fj≈Φ

θ−1
θ

Fj .

Substituting this in simplifies the system to
1− θµU θ(1− β) 0 0

− θ−1
θ 1 0 0

0 0 1 + (σ − 1)(1− α) (σ−1)(α−µA(θ−1))
θ

0 0 (σ − 1)(1− α) θ+(σ−1)(α−µA(θ−1))
θ


︸ ︷︷ ︸

A


ln L̂Ri

ln r̂Ri

ln r̂Fi

ln L̂Fi



=


1
1
θ

0

0

 ln Φ̂Ri +


0

0
α(σ−1)

θ
1+α(σ−1)

θ

 ln Φ̂Fi +


θ ln ˆ̄ui + ln ˆ̄L− θ ln ˆ̄U

− ln ĤRi

(σ − 1) ln ˆ̄Ai − ln ĤFi +
α(σ−1)
θ−1

(
ln L̂− (θ − 1) ln ˆ̄U

)
+ ln Ê

(σ − 1) ln ˆ̄Ai +
1+α(σ−1)

θ−1

(
ln L̂− (θ − 1) ln ˆ̄U

)
+ ln Ê

 (36)

or, after premultiplying by A−1,

ln ŷi = βR ln Φ̂Ri + βF ln Φ̂Fi + ei
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for yi = [LRi, rRi, rFi, LFi]. Compared with the unapproximated model, all that has happened is to approximate

ln ˆ̃ΦFj≈ θ−1
θ ln Φ̂Fj to collapse the two FCMA terms into one.

Lastly, since we will use the system (34) to conduct counterfactuals with the estimated parameters, we need to

relate the coefficients we will estimate in (36) to those in (34) . The only difference is that the last two elements of

the 4th column of A and bF have θ rather than θ − 1 in the numerator. Computing A−1bR after this adjustments

yields the same coefficient as in the unapproximated model, but the commercial variable elasticities change to

A−1bF =


0

0
θ−1
θ

1

1+θ
(

σ
σ−1

1
α+µA

−1
)

σ
(σ−1)(α+µA)

1

1+θ
(

σ
σ−1

1
α+µA

−1
)

 =


0

0
θ−1
θ βrF
βLF

. So the only change needed is to replace βrF with

θ
θ−1βrF in the unapproximated model equations (where βrF is the elasticity estimated in the data).

Lastly, we show that unique (to-scale) values of CMA can be recovered given dij , LRi, LFi, θ. Equations (31)

and (32) can be written in the form

ΦRi =
∑
j

KR
ijΦ

−1
Fj

ΦFj =
∑
i

KF
ijΦ

−1
Ri

where KR
ij ≡ d−θ

ij LFj and KF
ij ≡ d−θ

ij LRi. This satisfies the structure of the equations in theorem 1 in Allen et. al.

(2014). In the notation of that theorem, Γ = I and B =

[
0 −1

−1 0

]
. The spectral radius of the matrix |BΓ−1| (where

| · | denotes the element-wise absolute value) is one. Parts (i) and (ii) of theorem 1 then imply that there exists unique

(to-scale) solution ΦRi,ΦFi.60

Part 2: Relative Impacts of Transit Infrastructure. We now show we can use this system of equations to com-

pute changes in economic activity relative to the citywide average in response to a transit shock using estimates of

θ and the reduced form elasticities βLR
, βrR , βrF , βLF

, in addition to data on the initial equilibrium dij , LRi, LFi and

the change in transit infrastructure d̂ij . Assuming unobservables are constant across equilibria, exponentiating the

(unapproximated) system (34) and letting A−1
ij denote the ij-th entry of A−1 yields

L̂Ri = Φ̂
βLR

Ri

(
ˆ̄L ˆ̄U−θ

)A−1
11

(37)

r̂Ri = Φ̂
βrR

Ri

(
ˆ̄L ˆ̄U−θ

)A−1
21

(38)

r̂Fi =
ˆ̃Φ
βrF

Fi

(
ˆ̄L ˆ̄U−(θ−1)

)(A−1
33

α(σ−1)
θ +A−1

34
α(σ−1)+1

θ )
ÊA−1

33 +A−1
34 (39)

ˆ̃LFi =
ˆ̃Φ
βLF

Fi

(
ˆ̄L ˆ̄U−(θ−1)

)(A−1
43

α(σ−1)
θ +A−1

44
α(σ−1)+1

θ )
ÊA−1

43 +A−1
44 (40)

where Φ̂Ri, Φ̂Fi,
ˆ̃ΦFi,

ˆ̃LFi are given by

Φ̂Ri =
(
ˆ̄L ˆ̄U−θ

)−1∑
j

πR
ij d̂

−θ
ij

L̂Fj

Φ̂Fj

(41)

60Once these are recovered, a unique to-scale solution for Φ̃Fi is simply recovered from (33).
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Φ̂Fj =
(
ˆ̄L ˆ̄U−θ

)−1∑
i

πF
ij d̂

−θ
ij

L̂Ri

Φ̂Ri

(42)

ˆ̃ΦFj =
(
ˆ̄L ˆ̄U−θ

)− θ−1
θ
∑
i

π̃F
ij d̂

−(θ−1)
ij

(
L̂Ri

Φ̂Ri

)(θ−1)/θ

(43)

L̂Fj =
(
ˆ̃LFj

/ ˆ̃ΦFj

) θ
θ−1

Φ̂Fj . (44)

Note that we are using that βF and βR have zeros in the first and last two entries respectively, otherwise both CMA

terms would appear in each line. Here πR
ij =

d−θ
ij

LFj
ΦFj∑

j d−θ
ij

LFj
ΦFj

, πF
ij =

d−θ
ji

LRj
ΦRj∑

j d−θ
ji

LRj
ΦRj

and π̃F
ij =

d−θ
ji

(
LRj
ΦRj

) θ−1
θ

∑
j d−θ

ji

(
LRj
ΦRj

) θ−1
θ

. Since these

shares are homogenous of degree zero in ΦRi,ΦFi, their unique values are identified using values for dij , LRi, LFi, θ

(since these determine unique to-scale solutions for the CMA terms). In my particular model, computing the terms

in the A−1 matrix yields the system

L̂Ri = Φ̂
βLR

Ri
ˆ̄LβLR ˆ̄U−

βLR
θ

β (45)

r̂Ri = Φ̂
βrR

Ri
ˆ̄LβrR ˆ̄U−

βLR
(θ−1)

β (46)

r̂Fi =
ˆ̃Φ
βrF

Fi

(
ˆ̄L ˆ̄U−(θ−1)

)βrF

Ê
βLF

θ

σ (47)

ˆ̃LFi =
ˆ̃Φ
βLF

Fi

(
ˆ̄L ˆ̄U−(θ−1)

)βLF

ÊβLF
θ−1
σ (48)

The change in constants are given by

ˆ̄U = ˆ̄L
(βLR

−1) β
θβLR

[∑
i

πRiΦ̂
βLR

Ri

] β
θβLR

(49)

Ê =
∑
i

πE
i Φ̂

1/θ
Ri L̂

θ−1
θ

Ri (50)

where πLR
i = LRi∑

r LRs
and πE

i =
Φ

1/θ
Ri L

θ−1
θ

Ri∑
r Φ

1/θ
Ri L

θ−1
θ

Ri

are residential and expenditure shares from the initial equilibrium,

where the expression for ˆ̄U comes from summing up (45).

Now define ˆ̂yi = ŷi
/
(
∏

i ŷi)
1/I as the double-differenced change in yi between two periods relative to the

geometric average change across the whole city. Then this system becomes

ˆ̂
LRi =

ˆ̂
Φ

βLR

Ri

ˆ̂rRi =
ˆ̂
Φ

βrR

Ri

ˆ̂rFi =
ˆ̂
Φ̃

θ
θ−1βrF

Fi

ˆ̂
L̃Fi =

ˆ̂
Φ̃

βLF

Fi

ˆ̂
ΦRi = λR

∑
j

πR
ij d̂

−θ
ij

ˆ̂
LFj

ˆ̂
ΦFj

ˆ̂
ΦFi = λF

∑
j

πF
ij d̂

−θ
ji

ˆ̂
LRj

ˆ̂
ΦRj
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ˆ̂
Φ̃Fi = λ̃F

∑
j

π̃F
ij d̂

−(θ−1)
ji

(
ˆ̂
LRj

ˆ̂
ΦRj

)(θ−1)/θ

ˆ̂
LFj =

(
ˆ̃LFj

/ ˆ̃ΦFj

) θ
θ−1 ˆ̂

ΦFj

where λR =

[∏
i

∑
j π

R
ij d̂

−θ
ij

ˆ̂
LFj

ˆ̂
ΦFj

]−1/N

, λF =

[∏
i

∑
j π

F
ij d̂

−θ
ji

ˆ̂
LRj

ˆ̂
ΦRj

]−1/N

and λ̃F =

[∏
i

∑
i π̃

F
ij d̂

θ−1
ij

(
ˆ̂
LRi
ˆ̂
ΦRi

)(θ−1)/θ
]−1/N

.

To solve this system, one can begin by solving for ΦRi,ΦFi using {θ, dij , LRi, LFi} following the procedure outlined

above. With these in hand, πR
ij , π

F
ij , π̃

F
ij can be computed. Then, a change in the transit network d̂ can be fed into the

system above which constitutes a system of 8N equations in as many unknowns { ˆ̂LRi,
ˆ̂
LFi,

ˆ̂
L̃Fi, ˆ̂rRi, ˆ̂rFi,

ˆ̂
ΦRi,

ˆ̂
ΦFi,

ˆ̂
Φ̃Fi}

given data {LFj , LRi, dij} and parameters (θ, βLR
, βrR , βrF , βLF

). Any model with a gravity equation for commut-

ing with commute costs dij , commuting elasticity θ, and the reduced form ln ŷi = βR ln Φ̂Ri + βF ln Φ̂Fi + ei will

deliver the same distribution of relative changes to the shock across the city.

Part 3: Level Impact of Transit Infrastructure. Solving for the level effect of a counterfactual change in transit

infrastructure requires solving for (i) the scale of each relative change variable from part 2 and (ii) the three en-

dogenous scalars ˆ̄U, ˆ̄L, Ê until the system of equations (41)-(50) holds. This is a system of 8N + 2 equations in as

many unknowns, if the value of either ˆ̄Uor ˆ̄L is known. This last condition is realized by alternative assumptions

on population mobility. In the closed city case, city population is fixed so that ˆ̄L = 1. In the case with migration

into the city, two equations in ˆ̄Uor ˆ̄L are provided in Appendix E.1. The additional data requirements to solve this

system are the shares πLR
i and πE

i (which can be solved using {LFj , LRi, dij , θ}. The additional parameters required

are β, σ as can be seen from the exponents on the scalars in (45)-(48).

Part 4: Isomorphisms. Consider a model where the supply of commuters is determined by a gravity equation

Lij = cδjγiκij . Then the supply of residents and labor are given by LRi = γiΦRi and LFi = δiΦFi where

ΦRi = c
∑
j

LFj

ΦFj
κij

ΦFi = c
∑
j

LRi

ΦRi
κji

Following the results in part 1, this solution has a unique to-scale solution.

Now suppose that in addition to these two equations pinning down CMA, the equilibrium can be written as a

system of K equations in K endogenous variables {y1i, . . . , yki}Ii=1 of the form

K∏
k=1

yαkh

ki = λhΦ
bRh
RiΦ

bFh
Fieih for h = 1, . . . ,K (51)

Then this system can be written of the form
α11 · · · αK1

...
. . .

...
αK1 · · · αKK



ln ŷ1i

...
ln ŷKi

 =


bR1
...
bRK

 ln Φ̂Ri +


bF1
...
bFK

 ln Φ̂Fi +


ln ê1i + ln λ̂1

...
ln êKi + ln λ̂K
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⇔ A ln ŷi = bR ln Φ̂Ri + bF ln Φ̂Fi + ln ˆ̃ei

⇔ ln ŷi = βR ln Φ̂Ri + βF ln Φ̂Fi +A−1 ln ˆ̃ei

Exponentiating the system and assuming unobservables are constant across equilibria yields61

ŷih = Φ̂
βR,h

Ri Φ̂
βF,h

Fi

[
A−1λ̂

]
h

for h = 1, . . . ,K

Relative changes across the city are given by
ˆ̂yih =

ˆ̂
Φ

βR,h

Ri
ˆ̂
Φ

βF,h

Fi

where

ˆ̂
ΦRi = ρR

∑
j

πR
ij

ˆ̂
LFj

ˆ̂
ΦFj

κ̂ij

ˆ̂
ΦFi = ρF

∑
j

πF
ij

ˆ̂
LRj

ˆ̂
ΦRj

κ̂ji

where ρR =

[∏
i

∑
j π

R
ij κ̂ij

ˆ̂
LFj

ˆ̂
ΦFj

]−1/N

, ρF =

[∏
i

∑
j π

F
ij κ̂ji

ˆ̂
LRj

ˆ̂
ΦRj

]−1/N

, and πR
ij =

κij
LFj
ΦFj∑

j κij
LFj
ΦFj

, πF
ij =

κji
LRj
ΦRj∑

j κji
LRj
ΦRj

can be

solved using the to-scale versions of the CMA terms. Taken together, this is K+2 equations in the K+2 unknowns

{ˆ̂yih}Kh=1,
ˆ̂
ΦRi,

ˆ̂
ΦFi. Thus we have shown that parts (i) and (ii) apply to any model of this class. Appendix C.6

provides explicit examples of models that fall under it. ■

C.8.2 Proof of Proposition 2

This proof considers a slight modification of the baseline model, in which individuals (i) have separate productivity

shocks over workplace locations and preference shocks over residential locations, (ii) own an equal share of the

housing stock and (iii) face a labor income tax of tij = 1/(1 + θ).

The reason for these changes is that efficiency requires lump sum redistribution to workers (i.e. part of income

that does not depend on workplace location). In the decentralized equilibrium of the model in Section C.1, income

always depends on workplace location. Even if total income is yj = wj + e for some lump sum transfer e and

productivity shocks are over pairs ij, then total income is yj/dij ×E [ϵij |Choose ij]. Since this average productivity

term depends on the choice of workplace location, there is no longer a location-independent portion of income.

Despite the slight difference between the model used in this proof and the baseline model, simulations that feed

61Note that

Φ̂Ri = ĉ
∑
j

πR
ij κ̂ij

L̂Fj

Φ̂Fj

Φ̂Fj = ĉ
∑
i

πF
ij κ̂ji

L̂Ri

Φ̂Ri

where πR
ij =

κij
LFj
ΦFj∑

j κij
LFj
ΦFj

, πF
ij =

κji
LRj
ΦRj∑

j κji
LRj
ΦRj

can be solved using the to-scale versions of the CMA terms. So unique to-scale values

for the changes in CMA terms are pinned down given values L̂Ri, L̂Fi, yielding the full system of equations that characterizes
the equilibrium. Uniqueness (to-scale) of this solution in changes follows the same argument as for the solution in levels, given
they have the same functional form.
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in a very small shock (a constant d ln dij = 0.00001 ∀ij) into an efficient version of the baseline model (i.e. where

µU = µA = 0) confirmed the expression for the welfare elasticity derived in the proof holds in the baseline model

too.

Equilibrium Equations. The equilibrium equations in this model are

LRi = L̄

(
uiȳir

β−1
Ri

Ūdij

)θ

Lij = LRi
((1− tij)wj/dij)

θ

ΦRi

L̃Fj =
∑
i

Lij ϵ̄ij

wiL̃Fi =αp
1−σ
i βY

pi = α̃
wα

i r
1−α
Fi

Ai

rRi =
1− β

HRi
LRiȳi

rFiHFi = (1− α)p1−σ
i βY

Ū =

[∑
i

(
uiȳir

β−1
Ri /dij

)θ]1/θ
ȳi = Φ

1/θ
Ri + e

ΦRi =
∑
j

((1− tij)wj/dij)
θ

e =
1

L̄

(1− αβ)Y +
∑
ij

tijLijw̄ij


w̄ij = Φ

1/θ
Ri

where Y =
∑

i Yi is aggregate expenditure, α̃ ≡ α−α(1−α)−(1−α) is a constant, and (1−αβ)Y = (1−β)Y +β(1−α)Y
is total expenditure on residential and commercial floorspace. Note that the preference draw νi(ω) and productivity

draw ϵj(ω) are both drawn from a Frechet distribution with unit scale and shape θ > 1, and workers choose their

residential location before deciding where to work.

Planner Problem. The planner knows the distribution of individual heterogeneity, but not their specific draws.

She announces a policy where workers receive some amount of the consumption and housing good per unit of

effective labor supply based on where they work, as well as an amount based on where they live. In particular, the

policy for someone who chooses to live in i and work in j with productivity ϵ is

cij(ϵ) = c̃ij
ϵ

dij
+ c̄i

hij(ϵ) = h̃ij
ϵ

dij
+ h̄i.

Given these policies, individuals make free decisions about where to live and work. Utility from each choice is
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Uij(ϵ, ν) = ui

(
c̃ij
dij
ϵ+ c̄i

)β (
h̃ij

dij
ϵ+ h̄i

)1−β

ν. Since this is non-linear in ϵ, I constrain the planner to policies that

make the two transfers proportional to one another (with a constant of proportionality that can vary by residential

location), i.e. h̃ij = ιic̃ij and c̄i = ιih̄i. Then Uij(ϵ, ν) = uiι
1−β
i cij(ϵ)ν.

The planner then chooses the consumption policies and supply of residents and workers to maximize utility

subject to the following technological constraints

• Goods Feasibility:
(∑

k c
σ−1
σ

kij

) σ
σ−1

= Lij(c̃ijϵij + c̄), where ckij is the amount of variety k consumed by

individuals choosing ij. (Each variety is a freely traded good from a particular location, i.e. Armington

without trade costs).

• Residential Housing Feasibility: HRi =
∑

j Lijιi(c̃ijϵij + c̄)

• Commercial Floorspace Feasibility: H̃Fi = HFi

• Production Technology: AiL̃
α
i H̃

1−α
Fi =

∑
rs cirs

• Effective Labor Feasibility: L̃j =
∑

i Lijϵij

• Worker Mobility: LRi = L̄

(
uiι

1−β
i

(
Φ

1/θ
Ri +c̄

)
Ū

)θ

.

• Commuting Mobility: Lij =
(wj/dij)

θ

ΦRi
LRi

• Residential feasibility: L̄ =
∑

i LRi

• Effective Labor Technology: ϵ̄ij =
Φ

1/θ
Ri dij

wj

• CMA Definition: ΦRi =
∑

j(c̃ij/dij)
θ

The Lagrangian is

L = Ū

+
∑
ij

vij

(∑
k

c
σ−1
σ

kij

) σ
σ−1

− Lij(c̃ijϵij + c̄i)

+
∑
i

κi

HRi −
∑
j

Lijιi(c̃ijϵij + c̄i)


+
∑
i

λi

(
AiL̃

α
i H̃

1−α
Fi −

∑
rs

cirs

)
+
∑
j

ξj

(∑
i

ϵ̄ijLij − L̃j

)
+
∑
i

δi(HFi − H̃Fi)

+
∑
i

ρi

((
LRi

L̄

)−1/θ

uiι
1−β
i

(
Φ

1/θ
Ri + c̄i

)
− Ū

)

+
∑
ij

ψij

(
(c̃ij/dij)

θ

ΦRi
LRi − Lij

)

+
∑
i

τi

∑
j

(c̃ij/dij)
θ − ΦRi


+
∑
ij

ϕij

(
Φ

1/θ
Ri dij
c̃ij

1

dij
− ϵ̄ij

)
+ µ

(
L̄−

∑
i

LRi

)
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The first order conditions with respect to the choice variables {Ū , c̃ij , ιi, c̄i, ckij , Lij , LRi, L̃Fi, H̃Fi, ϵ̄ij ,ΦRi} are

(vij + κiιi)c̃ij ϵ̄ijLij = Lij

(
θψij + θτi

ΦRi

LRi
− ϕij ϵ̄ij

Lij

)
(c̃ij)

∑
j

(c̃ijϵij + c̄i)κiLij = (1− β)
ρiŪ

ιi
(ιi)

∑
j

Lij (vij + κiιi) = ρi
Ū

Φ
1/θ
Ri + c̄i

(c̄i)

λk = νij

(
ckij
Cij

)− 1
σ

(ckij)

δi = (1− α)λiAi

(
L̃i

H̃Fi

)α

(HFi)

ξj ϵ̄ij = (vij + κiιi) (c̃ij ϵ̄ij + c̄) + ψij (Lij)∑
j

ψij
Lij

LRi
=

1

θ

ρiŪ

LRi
+ µ (LRi)

ϕij + Lij c̃ij (νij + κiιi) = ξjLij (ϵ̄ij)

τi =
1

θ

Ū

ΦRi

Φ
1/θ
Ri

Φ
1/θ
Ri + c̄

−
∑
j

ψij
Lij

ΦRi
+
∑
j

1

θ
ϕij

ϵij
ΦRi

(ΦRi)

ξi = αλiAi

(
HFi

L̃i

)1−α

(L̃i)

1 =
∑
i

ρi (Ū )

and each of the constraint holds (to provide a condition for each multiplier).

Consumption and Housing. Define x̃ij = vc̃ij + κih̃ij = c̃ij (v + κiιi) to be expenditure per unit of effective labor

(as shown below, vij = v ∀ij). Likewise define x̄i = c̄i (v + κiιi) to be the expenditure on the fixed good so that

c̄i = x̄i/ (v + κiιi). Putting these into the mobility condition yield

Ū =

(
LRi

L̄

)−1/θ

ui
ι1−β
i

(v + κiιi)

(
Φ̃

1/θ
Ri + x̄i

)
,

where Φ̃
1/θ
Ri ≡

[∑
s(x̃is/dij)

θ
]1/θ. To solve for ιi, from its FOC we obtain

κiιi
v + κiιi

= (1− β)
ρiŪ∑

j(xij ϵ̄ij + x̄i)Lij
.

To solve this, we need a value for ρi. From the FOC for c̄i,

LRi = ρi
Ū

Φ̃
1/θ
Ri + x̄i

.

The definition of ϵ̄ij yields x̃ij ϵ̄ij = Φ̃
1/θ
Ri so that average income is constant across workplace locations within a

residence location. Using this to simplify the denominator in the FOC for ιi, combining these two conditions gives
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v + κiιi = v/β. Substituting this into c̃ij = x̃ij/ (v + κiιi), c̄i = x̄i/ (v + κiιi), h̃ij = ιic̃ij and h̄i = ιic̄i yields

c̃ij = βx̃ij/v

h̃ij = (1− β)x̃ij/κi

c̄i = βx̄i/v

h̄i = (1− β)x̄i/κi.

Plugging this into the expression for utility gives residential supply

LRi ∝ L̄

(
uiȳiκ

β−1
i

Ū

)θ

where ȳi = x̃ij ϵ̄ij + x̄i = Φ̃
1/θ
Ri + x̄i is average income of residents in i. Substituting this into the expression for

residential feasibility provides an alternative expression for average welfare

Ū ∝

[∑
i

(
uiȳiκ

β−1
i

)θ]1/θ

Residential Floorspace. Using these results, the floorspace market clearing condition implies

HRi = (1− β)
LRiȳi
κi

.

Production. The FOC for ckij implies ckij =
(

λk

vij

)−σ

Cij , which plugged into the definition ofCij =
(∑

k c
σ−1
σ

kij

) σ
σ−1

yields vij = v =
(∑

k λ
1−σ
k

) 1
1−σ ∀i, j. The market clearing condition for goods implies

AiL̃
α
i H

1−α
Fi = λ−σ

i vσ−1βY

where Y ≡
∑

i LRiȳi is aggregate expenditure. Combining the FOC for labor and commercial floorspace gives

HFi =
α

1−α
ξi
δi
L̃i, and substituting this back into the FOC yields both factor demands and an expression for λi

ξiL̃i = αλ1−σ
i vσ−1βY

δiHFi = (1− α)λ1−σ
i vσ−1βY

λi = α̃
ξαi δ

1−α
i

Ai
.

Labor Supply. Finally we need to solve the spatial mobility condition, i.e. the FOC for Lij . First, note the

condition for LRi implies ψij = ψi. The FOC for LRi and Lij can then be combined to get

ξj ϵ̄ij = x̃ij ϵ̄ij + x̄i +
1

θ

ρiŪ

LRi
+ µ.

Substituting in the value for ρi from above gives

x̃ij ϵ̄ij + x̄i =
θ

θ + 1
ξj ϵ̄ij −

θ

θ + 1
µ.
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Note this implies that expenditure per effective unit of labor depends only on workplace location (x̃ij = θ
θ+1ξj),

and expenditure per worker is constant across residential locations (x̄i = − θ
θ+1µ). Substituting the expression for

c̃ij into the commuting constraint gives

Lij = LRi
(ξj/dij)

θ∑
s (ξs/dis)

θ
.

Taking Stock. The solution to the planner’s problem is the vector (Ū , κi, v, ξi, δi, λi, Lij , LRi) that satisfies

LRi ∝ L̄

(
uiȳiκ

β−1
i

Ūdij

)θ

Lij = LRi
(ξj/dij)

θ∑
s (ξs/dis)

θ

L̃Fj =
∑
i

Lij ϵ̄ij

ξiL̃i = αλ1−σ
i vσ−1βY

λi = α̃
ξαi δ

1−α
i

Ai
.

HRi = (1− β)
LRiȳi
κi

δiHFi = (1− α)λ1−σ
i vσ−1βY

Ū ∝

[∑
i

(
uiȳiκ

β−1
i

)θ]1/θ
ȳi = Φ

1/θ
Ri − θ

θ + 1
µ

ΦRi =
∑
j

(
θ

θ + 1
ξj/dij

)θ

where ȳi = Φ
1/θ
Ri − θ

θ+1µ and ΦRi =
∑

j

(
θ

θ+1ξj/dij

)θ
are functions of these variables and the planner’s multiplier

on the residential feasibility constraint µ. This is the same set of equations as the decentralized equilibrium with

(κi, v, ξi, δi, λi, x̃ij , µ) = (rRi, P, wi, rFi, pi,
θ

1+θwj ,− θ
1+θ e), i.e. when tij = 1/(1 + θ). Therefore under this condition,

any competitive equilibrium also solves the social planner’s solution and is efficient.

Welfare Elasticity. Using the envelope theorem, the change in welfare to a change in commute costs is

∂Ū

∂dij
= −θψijLij

dij
− θ

τiΦRi

dij

Lij

LRi

⇒ ∂ ln Ū

∂ ln dij
= −

Lij

(
θψij + θ τiΦRi

LRi

)
Ū

Combining the FOC for c̃ij and ϵ̄ij give ξj ϵ̄ij = θψij + θτi
ΦRi

LRi
. Defining wij ≡ ξj ϵ̄ij to be average labor income for

commuters along ij, this simplifies to
∂ ln Ū

∂ ln dij
= −wijLij

Ū
.
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Substituting the expression for ρi into the FOC for Ū implies Ū =
∑

i LRiȳi. From the adding up condition we must

have ∑
ij

Lij ȳi︸ ︷︷ ︸
Total Income

=
∑
ij

Lijwij︸ ︷︷ ︸
Labor Income

+ (1− β)
∑
ij

Lij ȳi︸ ︷︷ ︸
Income from Res Floorspace

+ β(1− α)
∑
ij

Lij ȳi︸ ︷︷ ︸
Income from Comm Floorspace

=
1

αβ

∑
ij

Lijwij

Thus Ū = 1
αβ

∑
ij Lijwij and

∂ ln Ū

∂ ln dij
= −αβ wijLij∑

rs wrsLrs
.

Adding up to compute the change in utility d ln Ū to a vector of changes in commute costs {d ln dij}ij gives the

result in the proposition. Note that the parameters α, β account for the fact that some of the gains go to factors other

than labor, but these equilibrium price effects do not matter to an infinitesimal change in commute costs and thus

do not impact welfare. ■

C.8.3 Proof of Proposition 3

Part 1: Wages

To construct the system of equations used for solving for wages, I collect the expressions for supply and demand

for workers. Labor supply LFjg = w
θg
jgΦFjg can be rearranged as

wjg = L
1
θg

Fjg

∑
i,a

LRiag∑
k w

θg
kgd

−θg
ika

d
−θg
ija

− 1
θg

This is a system of equations in wjg given parameters and data {LRiag, dija, LFjg}. The problem is that I do not

observe employment by group, but only employment by industry LFjs. However, I can combine this data with the

structure of the model to find employment by group for each location.

From CES demand for each group’s labor, the share of any industry’s (effective) employment by any group g is

given by
L̃Fjgs

L̃Fjs

=
(wjg/αsg)

−σ∑
h(wjh/αsh)−σ

.

Summing this over industries yields total employment by group in a location

L̃Fjg =
∑
s

(wjg/αsg)
−σ∑

h(wjh/αsh)−σ
L̃Fjs

It remains to express effective units of labor supply in terms of observed data and wages.

Start by decomposing L̃Fjs in terms of data and wages as follows. First, compute the average productivity of

workers in j

ϵ̄jg = E [ϵ|g,Choose j] =
∑
i,o

E [ϵ|g,Choose j from(i, o)] Pr (i, o|j, g) =
∑
i,o

γg

(
T̃g
πj|iog

) 1
θg 1

dijo
Pr (i, o|j, g)

47



Next, break down the probability as

Pr (i, o|j, g) = πio|jg =
πj|iogπiog∑
r,u πj|rugπrug

=
πj|iogLRiog∑
r,u πj|rugLRrug

So

ϵ̄jg = Tg
∑
i,o

π
− 1

θg

j|iog
1

dijo

πj|iogLRiog∑
r,u πj|rugLRrug

Next, note that

ϵ̄js =
∑
g

ϵ̄jgπg|js =
∑
g

ϵ̄jg
LFjgs

LFjs
=
∑
g

ϵ̄jg
(wjg/αsg)

−σ/ϵ̄jg∑
h(wjh/αsh)−σ/ϵ̄jh

Putting these results together, we have that

LFjg =
L̃Fjg

ϵ̄jg
=
∑
s

(wjg/αsg)
−σ∑

h(wjh/αsh)−σ

ϵ̄js
ϵ̄jg

LFjs

Substituting this result back into the expression for labor supply, we find that wages are the fixed point of the system

wg = Fwg(wg;LRg, LFs) where the operator Fwg is defined to have the j-th element

Fwg(wg;LFs, LRg)j =

[∑
s

(wjg/αsg)
−σ∑

h(wjh/αsh)−σ

ϵ̄js
ϵ̄jg

LFjs

] 1
θg

∑
i,o

LRiog∑
k w

θg
kgd

−θg
iko

d
−θg
ijo

− 1
θg

= F1wg(wg;LFs, LRg)jF2wg(wg;LRg)j

where ϵ̄jg = Tg
∑
i,o

π
− 1

θg

j|iog
1

dijo

πj|iogLRiog∑
r,u πj|rugLRrug

ϵ̄js =
∑
g

ϵ̄jg
(wjg/αsg)

−σ/ϵ̄jg∑
h(wjh/αsh)−σ/ϵ̄jh

Note that the operator Fwg has the following properties:

• Monotonicity. Transform the system into log-space. From Euler’s theorem since F1 is homogenous of degree

zero we know for any vector d lnw we have that

∑
k,h

∂F1g

∂ lnwkh
= 0

so the total differential of F1g to a vector of wage changes is zero. The second term is monotonic in w, which

is a positive transformation of lnw. Thus, the operator Fwg is a strictly increasing function of lnw. By the

chain rule, Fwg is a strictly increasing function of w.

• Homogeneity. Consider first F1wg . The first part (wjg/αsg)
−σ∑

h(wjh/αsh)−σ is homogenous of degree zero in wages.

From the definition of ϵ̄js and ϵ̄jg we see that these too are homogenous of degree zero in wages. Therefore

F1wg is homogenous of degree zero in wages. Next, we see that F2wg is homogenous of degree one in wages,

so that Fwg is homogenous of degree one.
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Therefore, by the results in Fujimoto and Krause (1985) there exists a unique (to-scale) solution to the system wg =

Fwg(wg;LFs, LRg).

Part 2: Remaining Unobservables

Given wages, ΦRiag,Wis can be computed. The total wage bill is obtained from

WjsNjs =
∑
g

wjgL̃Fjgs

=
∑
g

wjg
(wjg/αsg)

−σ∑
h(wjh/αsh)−σ

LFjsϵ̄js

This allow me to obtain sales from αsXjs =WjsNjs. With this in hand, productivity comes from

Xjs =

(
Wαs

js r
1−αs

Fj

Ajs

)1−ς

X

since X is also observed using ΦRiag .

Lump sum income from the housing stock is recovered directly from π = L̄−1
∑

i(rRiHRi+ rFiHFi). Amenities

are retrieved from the resident supply condition

LRiag = λLg

(
uiag(TgΦ

1/θ
Riag − h̄rRi − paa+ π)rβ−1

Ri

)ηg

⇒ uiag =
(LRiag/λLg)

1/ηgr1−β
Ri

(TgΦ
1/θ
Riag − h̄rRi − paa+ π)

To solve for unobservables on the housing side of the model, I need to introduce a new pair of location char-

acteristics omitted in the main paper for notational brevity. In particular, the floorspace market clearing condition

rRi =
Ei

HRi
will not necessarily hold at the values for data and estimated wages (where Ei is total expenditure on

housing from residents of i). I therefore introduce an additional unobservable so that HRi = H̃RiξRi, where H̃Ri

are physical units of floorspace and ξRi are effective units (or housing quality). These unobservables can be solved

for from the housing market clearing condition ξRi = Ei

H̃RirRi
. Similar residuals for effective units of commercial

floorspace ξFi are obtained from the commercial floorspace market clearing condition ξFi =
∑

s(1−αs)Xis

H̃FirFi
, and total

floorspace supplies are given by HRi = H̃RiξRi and HFi = H̃FiξFi.

Finally, it remains to solve for the land use restrictions τi. These can be identified from

(1− τi) =
rRiξRi

rFiξFi

for locations with mixed land use. For locations with single land use, the wedges are not identified but these are

rationalized by zero productivities (for all sectors) or zero amenities (for all worker groups) and thus will remain

single use across counterfactuals.62 ■

62These solutions are unique to scale. In practice, as discussed in Section D.3, I normalize the geometric mean of wages and
floorspace prices to one. This affects the scale of unobservables such as productivities and amenities, but has no impact on
relative differences in exogenous characteristics or endogenous variables across locations or counterfactuals.
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C.8.4 Average Income in Single Group Model

Floorspace Market Clearing and Average Income. Average income of residents of i is

ȳi =
∑
j

πj|i(wj/dij)E [ϵij(ω)|ω chooses (i, j)] =
1

πi

∑
j

π
θ−1
θ

ij (wj/dij) =
1

πi
Ū−(θ−1)

(
uir

β−1
Ri

)θ−1∑
j

(wj/dij)
θ

= L̄Ū−(θ−1)

(
uir

β−1
Ri

)θ−1

ΦRi

LRi

= Ū
1

uir
β−1
Ri

= Ū
1(

LRi/ΦRiL̄Ū−θ
) 1

θ

= Φ
1/θ
Ri L

−1/θ
Ri .

Total expenditure by residents in i is then simply Ei = ȳiLRi = Φ
1/θ
Ri L

θ−1
θ

Ri , the expression in the floorspace market

clearing condition.

C.9 Bootstrap

To incorporate uncertainty from the parameter estimates into the welfare estimates, I bootstrap the quantification

procedure 200 times.

For the single group sufficient statistics model, I draw values for the 10 estimated parameters (κ, bBus, bCar, bTM , λ, θκ, βLR
, βrR , βrF , βLF

)

from normal distributions with means equal to the point estimates and standard deviations equal to the standard

error of the estimates. I consider only draws which have non-negative commuting elasticities and reduced form

elasticities otherwise the model has issues converging. This represents 95% of all drawn parameter vectors. I also

disregard a small number of draws with an implausibly large value for the agglomeration elasticity (µA > 1) since

this can lead to non-sensical negative welfare estimates.63 I then compute confidence intervals across the 200 boot-

strap estimates. In Table 6 the estimated parameters are used for welfare estimates in the first two columns so con-

fidence intervals are reported, and the non-parametric p-value for whether the fraction of welfare gains accounted

for by VTTS is less than one is simply the fraction of the 200 draws for which this is not true.

For the multigroup model I repeat the same procedure for the 10 estimated parameters (κ, bBus, bCar, bTM , λ, θgκ, ηg, µA, µ
g
U )

D Additional Model Results

D.1 Model Inversion

The model contains unobserved location characteristics, such as wages, productivities, amenities and land use

wedges. While the presence of agglomeration forces allows for the possibility of multiple equilibria, I am able

to recover unique values of composite productivities and amenities that rationalize the observed data as a model

equilibrium.

There is a key difference in this process compared to recent quantitative urban models (e.g. Ahlfeldt et. al. 2015).

In those models, there is one group of workers. It is straightforward to combine data on residence and employment

63Including these simulations widens the 90% and 95% confidence intervals to (-0.027,8.481) and [-1.035,10.754] respectively.
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with the model structure provided by the gravity equation in commuting to solve for the unique vector of wages

that rationalize the data. To replicate this in a model with multiple skill groups requires data on residence and

employment by skill group. While the former are typically available in censuses, I am unaware of datasets that

provide employment by skill group across small spatial units within cities. This is where the model’s multiple

industries become useful. The data contain employment by industry. Intuitively, given the differential demand for

skills across industries, the relative employment by industries in a location should be informative about the relative

employment across skill groups. The following proposition formalizes this intuition, and shows that a unique vector

of group-specific wages can be recovered using data on residence by skill and employment by industry. Obtaining

the remaining unobservables is straightforward.

Proposition 3. (i) Wages Given data on residence by skill group LRig , employment by industries LFjs, commute costs dija
and car ownership shares λa|ig in addition to model parameters, there exists a unique vector of wages (to scale) that rationalizes

the observed data as an equilibrium of the model.

(ii) Remaining Unobservables Given model parameters, wages and data {LRig, πa|iag, LFjs, Hi, ϑi, rRi, rFi} there

exists a unique vector of unobservables {uiag, Ajs, Xjs, τi, π} (to scale) that rationalizes the observed data as an equilibrium

of the model.

The procedure to estimate the parameters of the model proceeds in four steps. First, a subset of parameters are

calibrated and estimated without solving the full model. Second, wages are recovered using parameters from the

first step. Third, the remaining elasticities are estimated via GMM using moments similar to those in the reduced

form analysis. Fourth, with all parameters in hand the model is inverted to recover the remaining unobservables.

D.2 Calibrating αsg

Under the CES aggregator for labor, the relative wage bill paid by firms to high-skill workers in location j and sector

s defined as λjsH ≡ wjH L̃FjHs

/
wjLL̃FjLs is

λjsH =

(
wjH

wjL

)1−σ (
αsH

αsL

)σ

.

Taking a double difference of this ratio in sector s relative to a reference sector s′ gives

λjsH/λjs′H =

(
αsH

αsL

)σ
/(

αs′H

αs′L

)σ

which holds for all workplace locations j. Using that αsL = 1− αsH yields

αsH =

αs′H
1−αs′H

E [λjsH/λjs′H ]
1/σ

1 + αs′H
1−αs′H

E [λjsH/λjs′H ]
1/σ

,

where E [λjsH/λjs′H ] are observed at the city-level in the ECH data. This allows identification of αsH to scale

(relative to the value of αs′H in the reference sector). Using the manufacturing sector as the reference sector s′ =M ,

I pin down αMH with a departure from the spatial aspect of the model and use that under the CES aggregator the
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share of the wage bill paid to high-types is

Share of Wage Bill to HM =
w1−σ

H ασ
MH

w1−σ
H ασ

MH + w1−σ
L (1− αMH)σ

.

Plugging in the left hand side (observed at the city-level in the ECH data) along with the average wages wH , wL

observed in the manufacturing sector in that data allows me to recover a value for αMH .

The results are shown in Table A.9. The first column shows αHs while the second shows the relative wage bill of

high-skill workers. We see a sensible and monotonic relationship, where industries such as Education and Financial

Services have the highest weight on high-types and Domestic Services and Hotels & Restaurants have the lowest.

D.3 Model Solution

Calibrating TH , h̄, pa Given the parameter estimates in the previous section, for any value of Tg it is possible to

solve for the full distribution of wages across the city. Since the vector Tg is not identified to scale, I normalize

TL = 1 and calibrate TH so that the aggregate wage skill premium in the model matches that observed in the data.

This involves jointly solving the system of equations for {TH , wjg}

ŴP =
TH
∑

ia Φ
1/θH
RiaHλiaH∑

ia Φ
1/θL
RiaLλiaL

wg = Fg(wg;LFs, LRg, TH)

where ŴP = 1.713 is the wage premium observed in the data, the term next to it is the wage premium as predicted

by the model (where λiag is the share of type-g workers in cell (i, a)), and the operator Fg is the system of equations

used to solve for wages as a function of observables as given in Section C.8.3.

Next, having solved for wages the parameters h̄, pa are set to exactly match the average expenditure share on

housing and cars. In particular, they solve

1− β + h̄
∑
i,a,g

rRiLRiag

Eiag
λiag = ω̂H

∑
i,g

λCig
paP

TgΦ
1/θg
Riag

= ω̂C

where P is the aggregate price index,64 ω̂H = 0.3075 and ω̂C = 0.1513 are the aggregate expenditure shares on

housing and cars respectively from the GEIH, and λiag and λCig are the share of all individuals in cell (i, a, g) and the

share of car owners in call (i, g) respectively.

I solve for these parameters to exactly match the observed data in each period. For example, for the post period

I obtain TH = 2.016, h̄ = 1.2097 and pa = 117.37 (with 7).

Algorithm for Solving the Model The system of equations to be solved are provided in the proof of proposition 1.

In this section, I outline the iterative algorithm used to solve for the equilibrium of the model

1. Guess a vector w0, ϑ0,r0, u0, A0

64This can be computed given calibrated wages and productivities, as well as observed commercial floorspace prices.
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2. Given a wage vector wt, ϑt, rt, ut, At

(a) Compute Ht
Ri = ϑtiHi, Ht

F i = (1−ϑti)Hi, Φt
Riag =

∑
j(w

t
jg/dija)

θg and W t
is =

(∑
h α

σL

sh (w
t
ih)

1−σL
) 1

1−σL .

(b) Compute Pt =
(∑

j,s

(
((W t

js)
α(rtFj)

1−α/Ajs

)1−σ
) 1

1−σ

, where rtFj = (1− τi)r
t
i

(c) Compute Lt
R from

Lt
Riag = L̄g

(
utiag(TgΦ

1/θ
Riag − h̄rtRi − ptaa+ πt)rβ−1

Ri

)ηg

∑
r,o

(
utrog(TgΦ

1/θ
Rrog − h̄rRr − ptoo+ πt)rβ−1

Rr

)ηg

where pta = paP
t and πt = L̄−1 (

∑
iHRirRi +HFirFi).

(d) Compute labor supply L̃t
F ig = (wt

jg)
θg−1Ψt

jg , where Ψt
jg ≡ Tg

∑
r,o(Φ

t
Riog)

− θg−1

θg d
−θg
rjo L

t
Rrog .

(e) Update the main variables

w̃jg =

[
(P t)σ−1Xt

∑
sBisgA

σ−1
is (W t

is)
σL−(1+αs(σ−1))(rtF i)

−(1−αs)(σ−1)

Ψt
jg

] 1
θg+σL−1

r̃i =
Et

i + (1− α)Y t
i

Hi

ϑ̃i =


1 i ∈ DR\DF

0 i ∈ DF \DR

Et
i

Et
i+(1−α)Y t

i
i ∈ DF ∩ DR

Ãjs = Ājs(L̃
t
Fj/Tj)

µA

ũiag = ūiag
(
Lt
RiH/L

t
Ri

)µU

where Xt = β
∑

i,g,a(Tg(Φ
t
Riag)

1/θg − ptaa − rti h̄ + πt)LRiag is aggregate expenditure on goods, Y t
i =∑

s(p
t
is)

1−σ(AjsP
t)σ−1Xt is firm sales in i and Et

i = rti h̄L
t
Ri +(1−β)

∑
a,g(Tg(Φ

t
Riag)

1/θg − ptaa− rti h̄+

πt)Lt
Riag is expenditure on housing.

3. ||(w̃, ϑ̃, r̃, ũ, Ã)−(wt, ϑt, rt, ut, At)||∞ < ϵtol then stop. Otherwise, set (wt+1, ϑt+1, rt+1, ut+1, At+1) = ζ(wt, ϑt, rt, ut, At)+

(1− ζ)(w̃, ϑ̃, r̃, ũ, Ã) for some ζ ∈ (0, 1) and return to step 2.

Since the equilibrium system is only defined to scale (it is homogenous of degree zero), I normalize the geometric

mean of wages to one. In order to keep the scale of different variables on the same order of magnitude, I also

normalize the geometric mean of floorspace prices to one prior to solving for the model’s unobservables. This

affects the scale of unobservables such as productivities and amenities, but has no impact on relative differences in

exogenous characteristics or endogenous variables across locations or counterfactuals.

D.4 Benchmarking the Amenity Spillovers

The estimated amenity spillovers can be benchmarked to Diamond (2016) who estimates a spillover of the form

uig = ūig(LHi/LLi)
µU,g finds on average µU ≈ 2.62. To a first order, in this paper ukig ≈ ūikg(LHi/LLi)

µU,g(1−πH)

where πH is the share of high-skill workers. Using πH = 0.3 from 2005 (the midpoint of the period in question), the

average estimate of 0.818 gives E [µU,g] (1− πH) = 0.572, about one quarter of Diamond (2016).
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E Model Extensions

E.1 Migration

The baseline model considers a closed city with a fixed population. This section relaxes this to allow for migration

into the city from the rest of the country.

We assume that workers in Colombia face a choice to live in Bogotá or the rest of the country. Workers make

their migration choice based on expected utility in the destination; their expected utility is Ū in Bogotá and ŪRest in

the rest of the country. This latter term is an exogenous model parameter. Letting individuals have a multiplicative

preference η(ω) for each choice distributed Frechet with shape parameter ρ > 0, the number of workers choosing to

live in Bogotá is

L̄ = L̄Col

(
Ū

ŪRest

)ρ

,

where L̄Col is the (exogenous) population of the entire country. In changes this yields

ˆ̄L =
ˆ̄Uρ

πBog ˆ̄Uρ + πRest
,

where we have assumed that ˆ̄Urest = 1 (i.e. average utility in the rest of Colombia is unaffected by TransMilenio),

and πBog, πRest denote the share of Colombians living in Bogotá and the rest of Colombia respectively in the initial

period. The remaining equations of the model are unchanged, this simply turns ˆ̄L from a model parameter into an

endogenous variable.

The change in welfare of Bogotanos is now now ̂E
[
Ūη(ω)|ω chose Bogotá

]
=
[
πBog ˆ̄Uρ + πRest

]1/ρ
.

E.2 Congestion

Overview. This section develops an extension of the model that incorporates congestion. While the same system

of equations will determine the equilibrium of economic activity in the city given a matrix of commute times, a

separate system of equations will be added that determines commute times as a function of economic activity

(through the number of commuters). These will then be solved jointly to quantify the response of the equilibrium

to a change in infrastructure allowing for congestion.

The extension blends elements from Allen and Arkolakis (2021) and Gaduh et. al. (2022). Commuters travel

along a network where census tracts are nodes and adjacent census tracts (in the network sense) are connected by

edges. They choose a route between an origin and destination and for each edge in that route they pick a mode.

This extension inherits elements from the nested logit model in the paper. If an individual travels using the public

nest, they can choose between any mode in that nest (walking, bus, TransMilenio) for each node. However if they

travel by the private nest (i.e. car), they travel by car along each edge. Individuals have route-specific Frechet

shocks, yielding convenient expressions for dij as the expected cost over all the routes they might take between i

and j. Travel time on roads by car is subject to within-mode congestion through a power function of the volume of

car travel along that edge.

Congestion is incorporated by building off the working paper version of Allen and Arkolakis (2021).65 Unlike

the published version, I allow the elasticity with which commuters choose origin-destination pairs to differ from

65This version is Allen and Arkolakis (2019).
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the elasticity with which they choose the particular route to get there. This choice is made for two reasons. First, it is

restrictive to require commuters have the same heterogeneity in idiosyncratic preferences across pairs of neighbor-

hoods to live and work as they do across potential routes to get between home and work. For example, commuters

may by and large choose the fastest route between home and work (low dispersion in preferences over routes) but

tend to choose quite different home and work locations all else equal (high dispersion in preferences over live-work

pairs). Second, this choice keeps the economic and traffic modules of the model separate. In so doing, the reduced

form elasticities βR,βF from the baseline model continue to determine the response of economic activity to changes

in travel times. The difference is that now, the change in travel times with respect to changes in infrastructure will

depend on commuting choices through congestion. The extension borrows the idea from Gaduh et. al. (2022) to

incorporate multiple travel modes by allowing commuters to choose routes between origins and destinations across

alternative link-mode combinations, but allows for differential substitution patterns across modes when using pub-

lic transit as opposed to driving.

Traffic Module. To construct a tractable way of incorporating congestion, I model the routing choice of commuters

using the discrete choice framework from Allen and Arkolakis (2021). Between each pair of locations is an infras-

tructure matrix T(m) = [tkl(m)] for mode m ∈ {Walk,Bus,TransMilenio,Car}, where tkl(m) ≥ 0 is the minutes of

travel between location k and l on mode m. If no direct link exists between k and l on the network of mode m, I set

tkl(m) = ∞. I also set tkk(m) = ∞ to exclude self-loops.

The disutility of travel over link kl using mode m is simply exp
(
κtkl(m) + b̃(m)

)
, where b̃(m) is an amenity

associated with each mode as in the baseline model. I assume these costs are multiplicative, so that if a commuter

chooses a route r = {i = r0, r1, . . . , rK = j) of length K between i and j, the total cost is exp
(
κtijr + b̃r

)
where

tijr =
∑K

k=1 trk−1,rk(mrk−1,rk) and b̃r =
∑K

k=1 b̃(mrk−1,rk). Note here that mrk−1,rk is the mode chosen on link

rk−1, rk of the route. Lastly, I allow commuters to have an idiosyncratic multiplicative preference for a particular

route exp (νr(ω)), where νr(ω) is distributed T1EV for minima with shape parameter λ > 0. Under the same

structure of preferences from the baseline model, indirect utility from choice (i, j, r) is

Uijr(ω) =
uiwjr

β−1
Ri

exp
(
κtijr + b̃r + νr(ω)

)ϵij(ω).
Assuming that workers first choose where to live and work and then choose which route to commute with and

solving this via backward induction, the route choice problem is simply

min
r∈PK ,K≥0

{
exp

(
κtijr + b̃r + νr(ω)

)}
.

Workers become car owners with probability ρCar. If they do not own a car, they choose between public modes

only. Properties of the T1EV distribution imply that

E

[
min

r∈PPub
K ,K≥0

{exp (κtijr + νr(ω))}

]
= exp (−κt̄ij)

where t̄ijPub = − 1

κλ
ln

∞∑
K=0

∑
r∈PPub

K

exp

(
−κλ

K∑
k=1

[
trk−1,rk(mrk−1,rk) + b̃(mrk−1,rk)

])
,
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where PPub
K are all paths of length K using the public transit network consisting of m ∈ {Walk,Bus,TransMilenio}.

If a worker does own a car, they can also choose to to travel using the car alone with

t̄ijCar = − 1

κλ
ln

∞∑
K=0

∑
r∈PCar

K

exp

(
−κλ

K∑
k=1

[
trk−1,rk(mrk−1,rk) + b̃(mrk−1,rk)

])
,

where PCar
K are all paths of length K using the car network. If a worker owns a car, they decide whether or not

to use it to commute and solve max {t̄ijPub + ϵPub, t̄ijCar + ϵCar}. Assuming the idiosyncratic preference draws

ϵPub, ϵCar are drawn iid from a T1EV distribution, the probability of choosing to travel using the car conditional on

owning a car is

PijCar|Car =
exp (−κt̄ijCar)

exp (−κt̄ijCar) + exp (−κt̄ijPub)
.

Note that overall expected utility is

Ea

[
max
m

{
Uijm|a(ω)

}]
= uiwjr

β−1
Ri ϵij(ω)×

[
ρcar

(
E

[
min

r∈PPub
K ,K≥0

{exp (κtijr + νr(ω))}+ ϵPub, min
r∈PCar

K ,K≥0
{exp (κtijr + νr(ω))}+ ϵCar

])
+ (1− ρcar)E

[
min

r∈PK ,K≥0
{exp (κtijr + νr(ω))}

]]
= uiwjr

β−1
Ri ϵij(ω)×

[
ρcar

(
Emax

{
exp

(
κt̄ijPub + ϵPub

)
, exp

(
κt̄ijCar + ϵCar

)})
+ (1− ρcar) exp (κt̄ijCar)

]
= uiwjr

β−1
Ri ϵij(ω)× [ρcar (exp (κt̄ijOwnCar)) + (1− ρcar) exp (κt̄ijPub)]

where

t̄ijOwnCar ≡ − 1

κ
ln [exp (−κt̄ijPub) + exp (−κt̄ijCar)] .

So altogether

Ea

[
max
m

{
Uijm|a(ω)

}]
=
uiwjr

β−1
Ri ϵij(ω)

exp (κt̄ij)

where t̄ij = − 1

κ
ln [ρCar exp (−κt̄ijOwnCar) + (1− ρcar) exp (−κt̄ijPub)] .

This therefore is nested within the simple model of Appendix C.1, with a different formulation of commute costs

dij .

Define A(m) ≡
[
akl(m) ≡ exp

(
tkl(m) + b̃(m)

)−κλ
]

. As in Gaduh et. al. (2022), one can show via induction for

the public transit network that

exp (t̄ij)
−κλ

=

∞∑
K=0

AK
ijPub

where APub =
∑

m∈BPub

A(m)

where AK
ijPub is the ij element of the K matrix power of the matrix APub.66 So long as the spectral radius of APub

66For K = 1, we simply have

exp (t̄ij,1)
−κρ =

∑
m

exp(−κρtij(m)) =

 ∑
m∈BPub

A(m)


ij

= AijPub.

Now suppose that exp (t̄ij,K)−κρ =
[
AK

Pub

]
ij

. This is the sum of all weights along all paths between ij of length K. To compute
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is less than one,
∑∞

K=0 A
K
ijPub = (I−A)−1 ≡ BPub and

t̄ijPub = − 1

κλ
ln bijPub,

where bijPub is the ij element of BPub. For the car network, as in Allen and Arkolakis (2021)

t̄ijCar = − 1

κλ
ln bijCar,

where BCar ≡ (I−A(car))−1.

To close this module, I need to define how travel costs on each link tkl(m) are determined. I allow these to

depend on exogenous characteristics ekl(m) and, for the car network, the traffic using the link Ξkl(m) 67 through

the log-linear functional form

tkl(m) = ekl(m)Ξkl(m)ϕm ,

where ϕCar > 0 and otherwise is zero. There are LijCar = PijCar|Carρ
CarLij commuters using the car network, and

so the number of car trips using a link is therefore

Ξkl(Car) =
∑
ij

πkl
ij (Car)LijCar.

where πkl
ij (Car) is the number of times the average driver between i and j uses link kl. The results from Allen and

Arkolakis (2021) imply

πkl
ij (Car) =

bikCarakl(m)bljCar

bijCar
.

Letting LCar ≡ [LijCar] denote the matrix of commute flows on the car network, this system can be written in

matrix form as

Ξ(Car) = A(Car)⊙ [B′
Car(LCar ⊘BCar)B

′
Car]

where ⊙ and ⊘ are Hadamard product and division operators respectively. This formulation reduces the size of the

matrices that need to be stored, since A(Car),BCar,LCar are all I × I rather than {πkl
ij (Car)} which is I2 × I2.

Lastly, I define the exogenous portion of travel costs in the same way as Allen and Arkolakis (2021). Assuming

travel time is given by tkl(m) = (distancekl × speed−1
kl (m))δ0 and inverse speed is given by speed−1

kl (m) = γ(m) ×(
Ξkl(m)

laneskl(m)

)δ1(m)

× ϵkl(m) where γ(m) is a mode-specific shifter and ϵkl(m) is a link-mode-specific idiosyncratic

term, then

tkl(m) =

[
distancekl × γ(m)× ϵkl(m)

laneskl(m)δ1(m)

]δ0
︸ ︷︷ ︸

ekl(m)

×Ξkl(m)ϕm ,

the same for paths of length K + 1, we simply multiply by the adjacency matrix and sum across all modes that could be taken
next

exp (t̄ij,K+1)
−κρ =

∑
m∈BPub

[
AK

PubA(m)
]
ij

=

AK
Pub

∑
m∈BPub

A(m)


ij

=
[
AK

PubAPub

]
ij

=
[
AK+1

Pub

]
ij
.

This proves the conjecture.
67A previous version of the paper allowed for congestion on the bus and TransMilenio network too.
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where ϕm ≡ δ0δ1(m).

Traffic Equilibrium. Collecting the previous results, a traffic equilibrium is a vector {tkl(m),Ξkl(m), t̄ij} that given

commute flows Lij and parameters δ0, δ1(m), b̃(m), γ(m), laneskl(m), distancekl satisfies the system

tkl(m) = ekl(m)Ξkl(m)ϕm

Ξ(Car) = A(Car)⊙ [B′
Car(LCar ⊘BCar)B

′
Car]

t̄ijPub = − 1

κλ
ln bijPub

t̄ijCar = − 1

κλ
ln bijCar

A(m) =

[
exp

(
tkl(m) + b̃(m)

)−κλ
]
kl

APub =
∑

m∈BPub

A(m)

ACar = A(Car)

BPub = (I−APub)
−1

BCar = (I−ACar)
−1

LijCar = PijCar|Carρ
CarLij

PijCar|Car =
exp (−κt̄ijCar)

exp (−κt̄ijCar) + exp (−κt̄ijPub)

The first three rows is a system of as many equations as unknowns, while the second three rows define the auxiliary

variables of that system.

I refer to this as the traffic module of the model: it determines travel times t̄ij given a matrix of commute flows L.

Recall that the baseline model pins down changes in economic activity {L̂Ri, L̂Fi, r̂Ri, r̂Fi, Φ̂Ri, Φ̂Fi,
ˆ̃ΦFi,

ˆ̃LFi,
ˆ̄U, Ê}

given a change in travel times {d̂ij}. I therefore also need to express the change in travel times as a function of the

change in commute flows. I will model changes in transit infrastructure as a change in the number of lanes on the

mode in question, l̂aneskl(m). In particular, when simulating the removal of TransMilenio I will set l̂aneskl(m) to a

very small number ∀kl,m = TransMilenio so that t̂kl(m) → ∞.68 In response to this change in model parameters,

the change in traffic equilibrium can be written as

t̂kl(m) = l̂anes
−ϕm

kl (m)Ξ̂ϕm

kl (m)

Ξ̂kl(Car)Ξkl(Car) =
[
A′(Car)⊙ (B′

Car)
′
(L′

Car ⊘B′
Car) (B

′
Car)

′
]

t̄′ijk − t̄ijk = − 1

κλ
ln
(
b′ijk/bijk

)
k ∈ {Pub,Car}

A′(m) =

[
exp

(
t̂kl(m)tkl(m) + b̃(m)

)−κλ
]
kl

A′
Pub =

∑
m∈BPub

A′(m)

B′
Pub = (I−A′

Pub)
−1

68Since êkl(m) = l̂aneskl(m)−ϕm , setting lanes equal to zero in the counterfactual would leave êkl(m) = ∞ and the new
equilibrium would be undefined.
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B′
Car = (I−A′(Car))−1

This provides a system that pins down {t̂kl(m), Ξ̂kl(Car), t̄
′
ijk−t̄ijk} given data from the initial equilibrium {Ξkl(Car), b̃(m), tkl}

and commute flows in the counterfactual equilibrium L′ = L̂⊙ L. Since d̂ij = exp
(
κ
(
t̄′ij − t̄ij

))
with t̄ij as defined

above, this pins down the change in commute costs given the shock to infrastructure l̂aneskl(m) and the change

in commute flows L̂. Combining the economic module of the model with the traffic module provides one large

system of equations that jointly finds the distribution of changes in economic activity and traffic that is consistent

with equilibrium in both modules of the model.

Calibrating the Model. To solve the model in changes, I require values for the parameters δ, δ1(m), λ, b̃(m), γ(m)

and data tkl(m),Ξkl(m). Note that link-level traffic and travel times are unobserved, so these will be have to be

calibrated along with the deep model parameters.69

Given a value for the parameters δ, δ1(m), λ, I need to solve for the preference shifters b(m) and speed shifters

γ(m). I estimate these to match average speed and choice shares for each mode. With these in hand, I can solve for

tkl(m),Ξkl(m) which are consistent with the model and observed data given deep parameters δ, δ1(m), λ.

Lastly, I calibrate these deep traffic parameters δ, δ1(m), λ to existing values from the literature. First, I set the

routing elasticity λ = 175 from Allen and Arkolakis (2019). This implies highly elastic routing choices, so that

commuters take close to the least cost route between origins and destinations. Second, as in Allen and Arkolakis

(2021) I set δ0 = 1/θ to match a unit distance elasticity. Lastly, I calibrate δ1(Car) to give a congestion elasticity

ϕCar = δ0δ1(Car) = 0.06, the average congestion elasticity estimated for Bogotá by Duranton and Akbar (2017).

ϕm = 0 for all other modes.

E.3 Endogenous Floorspace Use with Fixed Housing Supply

This section considers an extension of the baseline model in which total floorspace supply is fixed but the share

used for commercial purpose ϑi is endogenous. To rationalize differences in commercial and residential floorspace

prices, we allow for a tax equivalent of zoning regulations which mean that floorspace owners receive (1−τi)rFi for

each unit of floorspace allocated to commercial use. Denoting ri = rRi, no arbitrage across floorspace use implies

rFi = (1 − τi)ri. This implies that the share of floorspace used for commercial purpose and the floorspace price is

pinned down by

ϑi =
HFi

HRi +HFi
=

(1− α)
(
wα

i ((1− τi)ri)
1−α

)1−σ

Aσ−1
i E

(1− β) Φ
1/θ
Ri L

θ−1
θ

Ri + (1− α)
(
wα

i ((1− τi)ri)
1−α

)1−σ

Aσ−1
i E

ri =
(1− α)

(
wα

i ((1− τi)ri)
1−α

)1−σ

Aσ−1
i E + (1− β) Φ

1/θ
Ri L

θ−1
θ

Ri

Hi
.

69To construct these, I need values for distancekl and laneskl(m). For walk, car and bus networks these are computed between
adjacent census tracts. distancekl is the minimum distance on each mode’s network between adjacent tract centroids along the
network. For non-adjacent tracts or adjacent tracts not connected by a network, distancekl = ∞. For the TransMilenio network,
distancekl is finite for two census tracts that are directly connected via the network, i.e. there is no stop between them. The
number of lanes is equal to one for any pair of connected tracts for the walk, bus and TransMilenio network. For the car
network, I first construct dummies for whether a paid is connected via primary, secondary and tertiary connections (which are
not mutually exclusive; a pair can be connected via multiple road types). I then assign 5 lanes to primary connections, 2 to
secondary connections and 1 to tertiary connections to approximate the road widths documented in Google Earth, and then
compute the total number of lanes between a pair as the sum all road type connections (i.e. the maximum number of lanes is 8).
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These equations hold for mixed use locations with ϑi ∈ (0, 1), which one can show to be locations where ūi > 0

and Āi > 0. If either exogenous amenities or productivities are zero in a location, that location becomes completely

specialized in that type of floorspace.

Extending the equilibrium system to incorporate these new equations, and writing in changes assuming unob-

servables are constant across periods yields the system

L̂1−θµU

Ri r̂
θ(1−β)
i = ˆ̄L ˆ̄U−θΦ̂Ri

r̂i =
ϑi
(
ŵα

i r̂
1−α
i

)1−σ ˆ̃L
µA(σ−1)
Fi Ê + (1− ϑi)Φ̂

1/θ
Ri L̂

θ−1
θ

Ri

Ĥi

r̂
(σ−1)(1−α)
i

ˆ̃L
θ+(σ−1)(α−µA(θ−1))

θ−1

Fi =
(
ˆ̄L ˆ̄U−(θ−1)

)−α(σ−1)+1
θ−1

Ê ˆ̃Φ
α(σ−1)+1

θ−1

Fi

ϑ̂i =

(
ŵα

i r̂
1−α
i

)1−σ ˆ̃L
µA(σ−1)
Fi Ê

(1− ϑi)Φ̂
1/θ
Ri L̂

θ−1
θ

Ri + ϑi
(
ŵα

i r̂
1−α
i

)1−σ ˆ̃L
µA(σ−1)
Fi Ê

ŵj =

((
ˆ̄L ˆ̄U−θ

) θ−1
θ

ˆ̃LFj

ˆ̃ΦFj

) 1
θ−1

The two equations for r̂i and ϑi are no longer log-linear. However, taking logs, differentiating the original system

and substituting out for wages yields the following first order approximation of the system


1− θµU θ(1− β) 0 0

−(1− ϑi)
θ−1
θ (1 + ϑi(σ − 1)(1− α)) ϑi(σ − 1)

(
α

θ−1 − µA

)
0

0 (σ − 1)(1− α) θ+(σ−1)(α−µA(θ−1))
θ−1 0

(1−ϑi)(θ−1)
θ (σ − 1)(1− α)(1 + ϑi) −(1− ϑi)(σ − 1)

[
µA − α

θ−1

]
1



ln L̂Ri

ln r̂i

ln ˆ̃LFi

ln ϑ̂i

 =


1

(1− ϑi)
1
θ

0

−(1− ϑi)
1
θ

 ln Φ̂Ri +


0

ϑi
(σ−1)α
θ−1

1+α(σ−1)
θ−1

α(σ−1)(1−ϑi)
θ−1

 ln ˆ̃ΦFi

+


θ ln ˆ̄iu+ ln ˆ̄L− θ ln ˆ̄U

−ϑi(σ − 1)α
(

1
θ ln

ˆ̄L− ln ˆ̄U
)
− ϑiα(σ − 1) ln Ê − ln Ĥi − ϑi(1− α)(σ − 1) ln(1̂− τi)

(σ − 1) ln ˆ̄Ai − α(σ−1)+1
θ

(
ln L̂− θ ln ˆ̄U

)
+ ln Ê

(σ − 1)(1− ϑi) ln
ˆ̄Ai − ϑi ln Ê − ϑi(1− α)(σ − 1) ln(1̂− τi)− α(σ − 1)(1− ϑi)

[
1
θ ln

ˆ̄L− ln ˆ̄U
]


Now theA, bR, bF terms have data in them through the initial floorspace share terms ϑi. This system can once again

be written as

ln ŷi = A−1bR ln Φ̂Ri +A−1bF ln Φ̂Ri + ei

where A =


(1− θµU ) I θ(1− β)I 0 0

−(1− diag (ϑi))
θ−1
θ (1 + diag (ϑi) (σ − 1)(1− α)) diag (ϑi) (σ − 1)

(
α

θ−1 − µA

)
0

0 (σ − 1)(1− α)I θ+(σ−1)(α−µA(θ−1))
θ−1 I 0

(1−diag(ϑi))(θ−1)
θ (σ − 1)(1− α)(1 + diag (ϑi)) −(1− diag (ϑi))(σ − 1)

[
µA − α

θ−1

]
I


4I×4I
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bR =


I
1
θ I

0

−(I − diag (ϑi))
1
θ


4I×I

bF =


0

α(σ−1)
θ−1 I

1+α(σ−1)
θ−1 I

α(σ−1)
θ−1 (I − diag (ϑi))


4I×I

Two insights follow from comparing this system to the equilibrium in the baseline model. First, there are now

heterogenous elasticities across locations since the A−1 matrix contains data on initial land shares which differ by

location. Second, since A is no longer block diagonal, each outcome now depends on both RCMA and FCMA.

E.4 Housing Supply Adjustment and Land Value Capture

Housing Supply. This section outlines the extension of the model allowing for a housing supply response to the

transit infrastructure. First, we consider a model where housing supply can freely adjust in each location, and

floorspace use is endogenous as in Section E.3. Housing is produced according to the Cobb-Douglas technology

Hi = T 1−η
i Kη

i . The price of capital is normalized to one. Defining the production function on one unit of land as

hi = kηi where ki ≡ Ki/Ti, developers solve the problem

max
ki

kηi ri − ki − pi

where pi is the price of land in i. This yields the density of construction per unit of land of ki = (ηri)
1

1−η and profits

η̃r
1

1−η

i − pi were η̃ ≡ η
η

1−η . The price of land adjusts so that developers earn zero profits pi = η̃r
1

1−η

i . Total housing

supply is then given by Hi = Ti(ηri)
η

1−η . The share of floorspace allocated to commercial use ϑi is determined as in

Section E.3. The remainder of the model equations are unchanged; this housing supply condition is simply added

to them. To ensure this fits the data in the initial period, a residual ζi = Hi/Ti(ηri)
η

1−η is introduced so that the

effective units of land are actually Tiζi. This wedge can be interpreted as the quality of land.

Land Value Capture. In the Land Value Capture scheme, only a subset of locations are allowed to have their

floorspace adjust.

Under the distance-based scheme, locations i ∈ I within 500m from a station are allocated a 30% increase in

floorspace. Their floorspace is allowed to increase up to a maximum of 30%, but not decrease (which is the relevant

case for a relatively short 16 year time horizon). That is,

Ĥi =


max{1, (r̂i)

η
1−η } if i ∈ I and max{1, (r̂i)

η
1−η } < 1.3

1.3 if i ∈ I and max{1, (r̂i)
η

1−η } > 1.3

1 if i /∈ I.

Perfect competition ensures the price of the permits adjust so that that developers earn zero profits, so income from

the scheme is (H ′ −Hi)r
′
i where prices are evaluated in the new equilibrium.

Under the CMA-based scheme, locations are allocated permits proportional to their change in CMA ϑi∆ lnΦRi+

61



(1 − ϑi)∆ lnΦFi so that the number of potential new permits (or, equivalently, the maximum amount of new

floorspace created) is the same as under the distance-based scheme. Here ϑi is the commercial floorspace share

in the initial equilibrium and the CMA changes are those using the baseline measure that hold population and em-

ployment fixed at their initial levels, so this is all information which the policy maker would have at the time of the

intervention.

Parameterization. In the quantitative exercises, a conservative choice for the housing elasticity is made so that

η/(1− η) = 0.7 to match the most inelastic cities in the US from Saiz (2010). This value corresponds to his value for

Oakland, CA which is ranked the 6th most inelastic city, one position behind San Francisco and San Diego (3rd and

4th) and a couple ahead of New York and Chicago (9th and 12th). I also shut down spillovers for a conservative

estimate, especially in the open city case where a large value for the amenity spillover can lead to larger changes in

population than in the baseline model.

E.5 Employment in Domestic Services

This section outlines the extension of the model that incorporates employment in domestic services. I begin by

noting the following facts. First, between 2000-2014 in the GEIH 7.3% of non-college educated Bogotanos worked

as domestic helpers while almost no college educated workers did. Second, in the 2014 Multipurpose Survey I

observe that 30.3% of college-educated households employ domestic services, compared to only 3.6% of non-college

households. Third, conditional on employing domestic servants households spend on average 0.15 of their income

on their wages, a fraction that remains constant with income. Unfortunately employment in domestic services

by employment location is reported neither in the census nor in the CCB. Therefore, given that 90% of domestic

servants are employed in college educated households, I impute domestic employment by assigning each worker

equally to high skilled households and scaling up until the total matches the number observed in the GEIH.

These observations motivate the following extension of the model. I assume that only high-skilled households

consume domestic services while only low-skilled workers are used in its production. I also assume domestic

services enter the utility of the high skilled according to Cobb-Douglas preferences with an expenditure share of

0.045 (=0.303*0.15). That is, I assume the common component of utility is given by

UH = C1−βH−βD (H − h̄)βHDβD
H

In each location, a perfectly competitive firm produces domestic services under the linear technology YiD = L̃FiL.

The cost is therefore equal to the low-skill wage pDi = wLi. Market clearing for domestic services therefore requires

that

βDEiH = pDi Di =
wLiL̃

D
FiL

ĀDi

where ĀDi is a residual that ensures this condition holds and reflects factors that make i more or less easy to work

in as a domestic servant.

The equilibrium equations of the model remain the same, apart from the labor demand equation which becomes

L̃Fig = w−σL
ig Pσ−1E

∑
s

BisgA
σ−1
is W

σL−(1+αs(σ−1))
is r

−(1−αs)(σ−1)
Fi + IgL

βD
HEiH

wLi
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and the expression for residential populations for high skilled which becomes

LRiag = L̄g

(
uiag(TgΦ

1/θ
Riag − h̄rRi − paa)r

β−1
Ri w

βD
g

Li

)ηg

∑
r,o

(
urog(TgΦ

1/θ
Rrog − h̄rRr − poo)r

β−1
Rr w

βD
g

Lr

)ηg
, g = H.

The other ingredients of the model are unchanged. The procedure to solve the model and unobservables is un-

changed, other than for wages. The system of equations is extended to include the domestic service sector:

Dig(w) = w
θg
ig

[∑
s

LRsg∑
k w

θg
kgd

−θg
sk

d
−θg
si

]
−

[∑
s

(wig/αsg)
−σ∑

h(wih/αsh)−σ

ϵ̄is
ϵ̄ig
LFis + LFiDIgL

]

where IgL is a dummy for whether g is L, and LFiD is employment in domestic services as described above.

E.6 Home Ownership

This section outlines the extension of the model that allows for local home ownership across worker groups to

match the ownership rates observed in the data. In the data, home ownership rates are 0.603 and 0.457 for college

and non-college individuals respectively in 2015. Letting oL and oH be the shares of home owners in the data, I

therefore assume that total income is given by

wjgϵj(ω)

dija
+ og

Ei

LRi

where Ei =
∑

g,a

(
rRih̄+ (1− β)(ȳiag − paa− rRih̄+ πig)

)
LRiag is total expenditure on housing by residents of i,

LRi are total residents in i and πig ≡ og
Ei

LRi
is income from home ownership. That is, the model is the same with

one replacement of π with πig . The remaining equilibrium equations and procedure to solve for unobservables are

easily extended to incorporate this change.

F Data Appendix

This section provides supplementary information on the data used in this paper.

F.1 Dataset Description

Population

The primary source of population data is DANE’s General Census of 1993, 2005 and 2018. This contains the pop-

ulation in each block by education-level. I define “college” educated workers to be those with more than post-

secondary education (defined by the level achieved during their last complete year of study). This contains both

conventional universities and technical colleges, but the small size of the latter means the results are not sensitive

to this grouping. My main results include adults 20 and older; the results are robust to including individuals of all

ages.70

70The data provided to me by DANE provided population totals by education level and age across 10 year age bins.
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Commuting

Commuting data comes from the city’s Mobility Survey administered by the Department of Mobility and overseen

by DANE. Conducted in 2005, 2011 and 2015, these are household surveys in which each member was asked to

complete a travel diary for the previous day. For 1995, I obtained the Mobility Survey undertaken by the Japan

International Cooperation Agency (JICA) to similar specifications as the DANE surveys. The samples sizes are

similar across years, including 141,316 trips for 73,830 individuals in 20,002 households per round on average.71 I

include only trips that originate or end in municipal Bogotá in the analysis.72 Sampling weights are also provided.

The survey reports the demographic information of each traveller and household, including age, education,

gender, industry of occupation, car ownership and in some years income.73 For each trip, the data report the

departure time, arrival time, purpose of the trip, mode, as well as origin and destination UPZ.74 Since all trips are

reported, these include commutes (trips to work) as well as for other purposes (e.g. shopping, seeing friends).

Reported modes are often quite detailed (e.g. 25 options in 2011); I often aggregate into car, bus, TransMilenio, and

others (walking, bicycle, motorbike). Trips on TransMilenio trunk and feeder buses are reported separately, so I

consider TransMilenio trips to be those involving at least one stage on a trunk bus (multiple modes can be reported

in a single trip).

Housing

As described in the main text, the mission of the cadastre is to keep the city’s geographical information up to date

and thus 98.6% of the city’s more than 2 million properties are included.75 The city is recognized as a pioneer on

the continent for the quality of its cadastre (Anselin and Lozano-Gracia 2012). In addition to having an updated

record of the city’s layout, the cadastre is important for the government due to its importance in city revenues:

in 2008, for example, property taxes accounted for 19.8% of Bogotá’s tax revenues (Uribe Sanchez 2010). These

taxes depend on assessed property values. In developed countries, property valuations are typically determined

using data on market transactions. However, Bogotá, like most developing cities, lacks comprehensive records

of such data. The city circumvents this by assessing property prices as follows. First, they collect available data

on transactions through outreach to the real estate sector (Uribe Sanchez 2010). Second, through a census-like

process officials collect information on property sales announced through signs and local newspapers, survey these

properties and then contact the owners pretending to be potential buyers. They negotiate to get as close as possible

to an actual sales price and record the final value, under the premise of a cash payment (Anselin and Lozano-Gracia

2012). Third, the city hires teams of professional assessors to value at least one property in one of each of the city’s

“homogenous zones”, which currently exceed 16,000 (Ruiz and Vallejo 2010).76 The net effect of these efforts should

be that a comprehensive record of property values which are less prone to under-reporting for tax avoidance.

71Minima-maxima across years are (i) 117,217-169,766 trips, (ii) 58,313-91,765 individuals and (iii) 15,519-28,213 households.
72Municipal Bogotá accounts for 85% of the residents of the Bogotá metropolitan area, and only 5% of employment in munic-

ipal Bogotá comes from outside the municipality (Akbar and Duranton 2017)
73The 1995 survey reports raw income, while in 2011 and 2015 eight income bin dummies are reported.
74In certain years more precise spatial information is reported, such as address of origin and destination in 2011, but UPZ are

consistently reported across all years.
75I confirmed this comprehensive coverage by overlaying the shapefile of plots with data over satellite images.
76These zones are determined by employees of the cadastral office who physically walk around the city and classify each

neighborhood into a zone of similar attributes based on observation and their knowledge of the city. Criteria used to define
“homogeneity” include categories for main activities, access to public services, and dominant land use. This process is extremely
cost intensive, representing around 73% of the total costs of estimating cadastral values (Anselin and Lozano-Gracia 2012).
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The city then combines this data on actual and assessed valuations with building characteristics to construct as-

sessed values for each property. By law, during every updating process each parcel must surveyed by enumerators

using a “parcel form” that contains more than 60 questions about the property.

One concern is whether properties surveys and assessments are made very infrequently, with annual changes

based solely on an aggregate inflation rate. While assessments are indeed inflated on a yearly basis, information for

individual properties is frequently updated through visits: between 2000 and 2006 over 1,036,000 properties were

updated, while a large push in 2008-2009 updated all of the city’s 2 million properties (Ruiz and Vallejo 2010).77 My

primary focus on long-differences in housing market outcomes ensures that data for essentially all properties was

updated.

To validate the valuations in the cadastre, I compare these assessed values per m2 in 2014 with purchase prices

per room reported in DANE’s 2014 Multipurpose Survey. This survey is a slightly more detailed version of the

household survey discussed below. One question asks respondents to report the purchase price and year for their

current home. I keep the 5,497 observations for which the purchase was made in the past 10 years,78 and compute

the average price per room within each locality (the smallest geographical unit in the survey). I merge these year-

locality observations with the average price per m2 of residential floorspace in the cadastral database, and take

weighted averages of both cadastral and reported unit prices across years where I weight by the number of obser-

vations in each year. Figure A.8 plots the average cadastral price against the reported purchase price, normalizing

each variable to have unit mean. The measures have a high correlation coefficient of 0.947, with the majority of

observations lying along the 45-degree line. Importantly, there appears to be no deviation of the relationship for

expensive neighborhoods, which we would expect if cadastral values were systematically over- or under-valuing

these properties.79 Consistent with the city’s efforts, it appears that property values in the cadastral data are fairly

accurate representations of actual property prices throughout the city.

Finally, to construct comparable measures of floorspace prices by census tract I purge property prices driven

by differences in building composition by regressing log floorspace prices per m2 on property characteristics (age

bins, point bins) and a set of census tract fixed effects, and recover these fixed effects.

Employment (Firms)

The employment data used in this paper comes from two sources. The first is a census of the universe of estab-

lishments from DANE’s 2005 General Census and 1990 Economic Census. Panel A of Table A.10 presents some

summary statistics. There are many small firms in both years: while average firm size is close to 5 employees, the

median firm only has 2 employees while firm size at the 90th percentile is between 6 and 7.

The second source is a database of all registered establishments from Bogotá’s Chamber of Commerce (CCB by

its Spanish acronym) in 2000 and 2015. The 2015 dataset contains the block of each establishment, its industry and,

in many cases, the number of employees. Keeping only observations with non-missing values for all 3 variables

leaves around 126,867 observations as reported in Panel B. In 2000 neither the number of employees nor the block

are reported, but it does provide the address. Bogotá’s clear grid system made it straightforward to geolocate the

77Updated assessments and property transaction records were conducted throughout, with assessments for each homogenous
zone being updated during the 2008-2009 comprehensive update.

78The results are not sensitive to this choice.
79Of course, while it is possible that values in the Multipurpose survey themselves are biased, there is no strong reason to

think this would be the case since DANE enumerators are well-trained in making clear that responses are anonymous and for
statistical purposes only.
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vast majority of these.80 Retaining establishments with non-missing industry codes left 34,332 observations.

Two aspects of the CCB data need addressing. First, there is the absence of employment data for 2000. I therefore

rely on establishment counts as a measure of employment when using the CCB in the main analysis. In the 2015

data, I compute the number of establishments in a locality as well as the mean employment and find a correlation

of 0.033. In the 2005 census, the correlation is 0.09. Since average establishment size is fairly constant across the city,

this suggests establishment counts are a fairly good proxy for employment.

Second, the coverage of establishments is much lower than in the census. While aggregate coverage gaps

will not matter for the analysis, relative differences across the city will pose a problem since relative changes in

employment in the CCB data may not be representative of actual changes (for example, if informal employment is

more likely to be located in certain areas than others).81 I diagnose the representativeness of the CCB dataset by

comparing its spatial distribution of establishments with that reported in the 2005 census. Panels (a) and (b) Figure

A.7 plots the density of establishments in each locality in the CCB dataset in each year on the y-axis against the

density of establishments in the 2005 census on the x-axis, normalizing both variables to have unit geometric mean.

Both figures show a reassuringly tight relationship, with correlations of 0.948 and 0.949 respectively. Importantly,

the majority of localities lie along the 45-degree line regardless of whether they are poor (Ciudad Bolivar, Kennedy,

Bosa, Tunjuelito) or rich (Chapinero, Usaquen), implying that the coverage is fairly uniform across different types

of neighborhoods. Panel (c) confirms that the uniform coverage holds across smaller spatial units, by comparing

establishment counts across 631 sectors.

Employment (Workers)

Worker-level employment data comes from DANE’s Continuing Household Survey (ECH) between 2000 and 2005,

and its extension into the Integrated Household Survey (GEIH) for the 2008-2014. These are monthly labor market

surveys covering approximately 10,000 households in Bogotá each year. In the external processing room of DANE’s

offices in Bogotá, I was able to access versions of these datasets with the block of each household provided.82 The

sampling scheme is a repeated cross-section, and so while it is possible to document changes within geographic

areas it is not possible to track individuals over time. The survey includes questions pertaining to individual and

household characteristics, as well details on employment such as income, hours worked and industry of occupation

across primary and secondary jobs.

Maps and other Datasets

The city provides a geodatabase for use in ArcMap containing spatial datasets on the features of Bogotá. From the

road layer I extract shapefiles for primary, secondary and tertiary roads. Walk routes consist of the union of the

road network in addition to some smaller pedestrian-only paths. The routes of the bus official bus system (which

was integrated towards the end of 2012) are also provided. Given that the aim of the government was to bring the

provision of existing routes under one integrated system, I use these current routes to measure the location of the

80The success rate was around 95%. Addresses in Bogotá are of the form C26#52-18 which stands for the 26th street (Calle in
Spanish) and 52nd avenue, 18 meters from the intersection.

81Note that I also require the coverage of the CCB to be representative of overall employment across 1-digit industries used in
the analysis, too. I find this indeed to be the case, the correlation between the share of establishments in each 1 digit industry in
the CCB data vs the 2005 census is 0.991 in 2015 and 0.984 in 2000.

82Public versions provide no additional geographic information within the city
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bus network throughout the period.83 Since buses tended to ignore posted bus stops, I create random bus stops

every 250m along each route. The database also includes TransMilenio stations and routes, as well as the routes of

feeder buses (which I create stops for in the same way as for normal buses). Finally, I use the topographical layer to

compute the slope of land across the city in the computation of the least cost construction path instrument.

In all datasets above, the spatial units are either defined through the Cadastre or DANE’s classification. The

city’s geodatabase provides a map of the geography used by the Cadastre (down to the property-level), while DANE

provides a shapefile for their map at the block-level. Luckily, these spatial units remained essentially constant

during my period of study.84 I merge the Cadastre’s map to DANE’s to use as consistently across analyses, and

compute the distance from each tract centroid to particular features (CBD, nearest main road, nearest TransMilenio

station in each year) in ArcMap. I place the central business district at the center of the high employment density

area in the center-east of the city. This is the historical center of the city cited in the literature; when including this

variable in regressions I will allow for a different coefficient depending on whether a tract is in the North, West or

South of the city in order to account for the different types of neighborhoods in each axis of the city.

Geographic units referred to in the paper consist of localities (19), UPZs (113), sectors (631), census tracts or

sections (2,799) and blocks (43,672).

Lastly, data on crime come from the Bogotá police department, and report the GPS location of all reported

violent, property and sexual crimes between 2007 and 2013.

F.2 Computing Commute Times

I compute commute times using the Network Analyst toolbox in ArcMap. This accepts as inputs a set of points to

be used as origins and destinations (census tract centroids in my setting), as well as a network consisting of a set of

edges and nodes at which these edges can be traversed. Each edge of the network is assigned a cost to travel along

it; the toolbox then uses Djikstra’s algorithm to compute the least cost paths connecting any origin-destination pair.

In my setting, the networks are defined separately for each mode of transit. The walk network consists of single

layer of pedestrian paths. The car network consists of the union of primary, secondary and tertiary roads, that can be

joined at any intersection, each of which is associated with a different speed. The bus network is comprised of bus

routes described above as well as the walk network; the two intersect only at bus stops which are placed randomly

every 250m. The TransMilenio network consists of the trunk network (which can only be entered at stations), the

feeder bus network (which can be entered at stops placed in the same was as for buses), and the walk network.85 In

order to compute the time cost to traverse each edge of these networks, it remains to assign a speed to each mode.

While Section G provided evidence that speeds were not changing on routes affected by TransMilenio relative

to other locations, Table A.12 shows that aggregate speeds were not quite constant over the period. There was

a significant reduction in speeds between 1995 and 2005 (a period of city expansion), which remained relatively

constant thereafter. I therefore seek to assign two sets of speeds to match the distribution of observed commute

times in the “pre” and “post” periods. In the main results, I use the average of both but provide evidence in

83While I acknowledge this might introduce measurement error in the bus network location for early years, the strong associ-
ation between predicted times and those observed in the 1995 Mobility Survey suggests this is a fairly good approximation.

84For the cadastre, while old properties were partitioned and new ones created, the underlying block structure and “barrios”
remained unchanged (up to new ones being added as the city grew). Similarly, existing blocks and census tracts DANE’s map
were kept in almost all instances unchanged, again up to new blocks being added between 2005 and 1993.

85From the commuting data, I observe that the majority of trips taken by TransMilenio do not involve other buses (other than
feeders). Therefore I exclude the bus network in the construction of the baseline TransMilenio.
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robustness checks that the results are similar if either set of times is used separately. Finally, note that average

speeds reflect the net effect of traveling on different road types (for cars), modes (for buses and TransMilenio) as

well as wait times incurred at transfers.

I set speeds to match travel times observed in the data for commutes to and from work during rush hours

in the Mobility Surveys (departing between 5-8am and 4-6pm). I set walk speeds to 5km/h in all years (Ahlfeldt

et. al. 2015). Car speeds were reportedly as high as 27 km/h (Steiner and Vallejo 2010) in early years, while

the Department of Mobility reports average speeds along main roads of 24 km/h from 2010-2015. To allow for

additional time spent parking and slower speeds during rush hours, I set speeds of 20 km/h, 14 km/h and 10 km/h

on primary, secondary and tertiary roads respectively for the pre-period, and 14 km/h, 10 km/h and 8km/h for

each type during the post-period. Buses were reported to travel at 10 km/h during rush hour before TransMilenio,

with some estimates as low as 5 km/h (ESMAP 2009; Muller 2014). I set bus speeds of 13 km/h and 11 km/h for the

pre- and post-period respectively, and set transfer times of 4 minutes to enter or exit the network by foot implying a

total of 8 minutes spent waiting on each trip. Finally, most reports cite system speeds of 26.2km/h for trunk service

on TransMilenio routes (Cracknell 2003; Transportation Research Board 2003). However, this was for earlier years

and reports suggest speeds may have slowed later on. I therefore set speeds of 26 km/h for the pre-period and

20 km/h for the post-period. I set the speed of feeder buses equal to those of regular buses, and again impose a 4

minute transfer time to enter or exit each network.86

Figure A.10 explores how these predicted times compare with those observed in the data. I construct observed

times for each mode using those reported in the Mobility survey for rush hour trips to and from work, and create

an average for each origin-destination UPZ pair. I construct the predicted time for the same trip by taking an area-

weighted average of the commute times calculated in Arc between each census tract pair within the UPZ pair. I use

1995 as the pre-period for each mode other than TransMilenio for which I use 2005, and 2015 as the post-period. For

each mode, the times are highly correlated with the majority of observations lying close to the 45-degree line.

In the main results, I use the average of the pre- and post-period calibrated commute times from ArcMap. In

columns (1)-(3) of Table A.14, I run difference in difference specifications to formally test whether the coefficient

from a regression of log observed times on log (average) predicted times changes over time. The difference in

slopes in the third row are insignificant for cars and TransMilenio, but is positive for the case of buses. However,

inspection of Figure A.10 suggests this is driven by a drop in the intercept for 2015 caused b y movements in

the left tail: overall the majority of points lie along the 45-degree line in both years.87 Finally, the last column

examines whether the relationship between predicted and observed times is constant across modes within a year.

The insignificant coefficients in rows 4-8 confirm this to be the case.

F.3 Constructing the Instruments

Least Cost Construction Path From Transportation Research Board (2007), I obtain engineering estimates for

building BRT on different types of land. Their estimates suggest it costs $4mm to build a mile of BRT by converting

a median arterial busway, $25mn to build a new bus lane on vacant land, $50mn to build an elevated lane and

86I decided on these times to balance the reported speeds in the literature and matching those in the data. Unfortunately, there
was not a simple way to automate the procedure to choose speeds that matched the fit with the data since each creation of a
Network dataset in ArcMap must be done manually.

87Attempts to shift the intercept by varying the fixed time cost within reasonable bounds had negligible effects on this speci-
fication.

68



$200mn to build a tunnel.88 The maximum grade of BRT is 10% for short runs (Barr et. al. 2010), so I assume tunnels

are built on land steeper than that. I assume that building over developed land costs twice as much as vacant land.89

I then digitize a land use map of the city in 1980 produced by the United States Defense Mapping Agency (Figure

A.11, panel (a)) and clean the image into vacant, arterial road, water and developed land use categories. I infill the

medians that can be seen in between a handful of large main roads throughout the city, so that these are also coded

as arterial. I then compute the share of each land use category in each 20m by 20m pixel, and use a topographical

shapefile to compute the average slope in each pixel. Multiplying the share of each land use type by the prior cost

estimates yields a cost to build BRT on each pixel. Panel (b) of Figure A.11 shows the results, with lighter shades

representing higher cost.

I read this cost raster into Matlab, and use the Fast Marching Method to compute the least cost routes between

portals and the CBD. Panel (c) of Figure A.11 shows the resulting paths. We see that for the majority of cases, the

actual lines follow the least cost routes suggesting that conditional on the locations of origin and destinations the

costs were a large driver of actual placement. To construct the final input for ArcMap, I create stops every 700m to

match the spacing of TransMilenio stations. I add instruments for the Feeder routes by placing a 2km radius disk

around each portal connecting the two with 8 “spokes”, and create stops every 250m.

Tram System From Morrison (2007), I obtained an image of the city’s tram system that was last placed in 1921

and stopped operating in 1951.90 Since the city was far smaller at that time, I digitize the shapefile and extend

the routes to the edge of the city in present day. This might reduce concerns about the direct effects of the tram

instrument, since the large portions of it were not built. Panel (d) of Figure A.11 shows the extended lines (as well

as the originals). As before, I create stops every 700m and construct the least cost commute times in ArcMap using

the same speed of travel as trunk lines.

Instrument Construction These procedures provide counterfactual TransMilenio networks. To construct the

pairwise travel times under each instrument, I take the modern street and transit network and then replace the

Transmilenio with the networks implied by the two instruments. I then recalculate travel times for each pair over

the counterfactual networks.

F.4 Cost-Benefit Calculations

This section presents some of the calculations behind the cost figures in Table A.7. Phase 1 of the system cost

$5.85mm per km to build in 2003 dollars.91 This was financed through local fuel taxes (46%), national government

grants (20%), a World Bank loan (6%) and other local funds (28%). Phase 2 was more expensive at $13.29mm per

km in 2003 dollars, with funding coming from the national government (66%) and a local fuel surcharge (34%).

88These numbers are close to the costs of $8mn per mile in 2003 USD reported by the first phase of TransMilenio (Transportation
Research Board 2003).

89All figures are in 2004 USD and are per mile of construction. Since I have less guidance over the cost of building on developed
land, I experimented with higher values and found the routes were unchanged.

90The chief of the Liberal Party was assassinated during an international conference in Bogota in 1948, after which riots led to
the destruction of one quarter of the city’s trams. Combined with the demand for higher capacity transit, this led to the retiring
of the trams and their replacement with buses. While trams operated on rail lines, the buses that followed shared roads with
cars.

91All figures from Baltes et. al. (2006), except the cost per km for phase 3 which is from https://www.esci-
ksp.org/archives/project/bogota-brt-colombia.
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The higher costs were due to road widening, increased investment in public space and associated infrastructure

improvements. Phase 3 continued the trend costing $20mm per km in 2014 dollars. Averaging over the 41km of

lines in phase 1 and 2 and 21km of lines in phase 3, the average construction cost for the whole 103km network as

of phase 3 was $14.08mm in 2016 dollars.

Operating costs are recovered at the farebox by private operators; the cost to transport a passenger is close to

the fare (Transportation Review Board 2003). Using the figure of 565mm rides in 2013 from BRT Data (2017) and the

fare of $0.66 in 2016 dollars yields an operational cost of $372.97mm per year.

GDP in Bogotá in 2016 from DANE92 is equal to 221,456 bn 2016 Colombian Pesos, equivalent to $72.57bn in

2016 dollars.

G Supplementary Empirical Results

G.1 TransMilenio Trip Characteristics

Table A.11 presents some descriptives of trips taken in Bogotá in 2015. Three points are worth emphasizing. First,

TransMilenio is an important mode of transit constituting 16% of all trips, exceeding the 13.7% taken by cars but

less than the roughly 34% taken by bus and walking. Second, the average TransMilenio trip is 10.5km, far longer

than the 6.6km and 6.1km average trips taken by other motorized transport. The fixed costs involved in reaching

and entering stations make the benefits of BRT pronounced for longer journeys. Third, when compared to other

modes we see that TransMilenio is primarily used for trips to work and business. These constitute around 40% of

trips on the system. For private matters or shopping, walking is by far the dominant mode, reflecting that these

trips tend to be shorter and closer to home. TransMilenio’s outsized role in commuting motivates the focus on its

effects on access to jobs emphasized in this paper.

Table A.12 examines how each mode’s role in commuting has evolved over time. Panel A shows the changes

in each mode’s share of commutes to work. TransMilenio’s rise has been primarily at the expense of a reduction

in bus trips. Panel B shows that TransMilenio is on average 26.7% faster than buses and roughly the same speed

as trips taken by cars.93 TransMilenio speeds have fallen over time as the system has become congested with

greater use over time. Changes in aggregate speeds on cars and buses appears not so correlated with TransMilenio

ridership: speeds fall significantly between 1995 and 2005 (a period of significant population growth of over 29%)

while stabilizing between 2005 and 2015. This highlights the role of external aggregate shocks, such as urbanization

lead by the country’s civil war, that motivates the more local analysis pursued in this paper. Panel C reports a mild

fall in the share of car owners consistent with its decreased role in commuting. However, the persistently higher

proportion of car owners vs car commuters reflects the importance of cars for other trip purposes.

92Source: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-
departamentales/cuentas-nacionales-departamentales-pib-trimestral-bogota-d-c

93Note that these are observed door-to-door speeds rather than system speeds: TransMilenio buses are reported to operate
faster than the results in Table A.12 suggest, but queueing at stations and time taken to walk between stations and final destina-
tions decrease average observed speeds. Average speeds are also conflated by the different nature of trips taken across modes
(such as TransMilenio being used for longer trips, which are typically faster). Section F.2 compares speeds across modes control-
ling for trip characteristics and composition, and reports that while the relative performance of TransMilenio is more muted it
remains a substantive improvement over existing buses.
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G.2 Impact on Other Mode Speeds

BRT may affect equilibrium speeds through impacts on travel mode and route choices, and the number of lanes

available for other traffic. In Bogotá, the number of lanes available for other traffic was left unchanged: one might

then expect TransMilenio to have reduced congestion faced by cars and other buses. To examine the impact of

TransMilenio on car and bus speeds, I run regressions of the form

ln Speedijkt = αij + βTM Routeij × Postt + γ′tXijkt + ϵijt

separately for each mode. Here (i, j) indexes a UPZ origin-destination pair, k indexes an individual, Postt is a

dummy equal to one in 2015 and zero in 1995,94 and Xijkt is a vector of control variables containing individual and

trip characteristics, which are allowed to have time-varying effects on speeds. All specifications include a gender

dummy, hour of departure dummies and age quantile dummies, origin and destination locality fixed effects, each

interacted with the Post dummy. Certain specifications additionally control for log trip distance interacted with the

Post dummy.

The variable TM Routeij captures whether the trip from i to j has been “treated” by TransMilenio. To define

this measure, I compute the routes for the least cost commutes between each pair of UPZ origin and destination

in ArcGIS separately for cars and buses. I then intersect this route with the TransMilenio network (within a 100m

tolerance) to compute the share of a trip that lies along a TransMilenio line. With this in hand, I create two treatment

measures. The first is simply the share of a trip that lies along a TransMilenio line. The second is a dummy for

whether more than 75% of the trip is adjacent to TransMilenio, allowing for a non-linear effect on speed.

Table A.13 presents the results. Once the composition of trips is properly controlled for (columns 2 and 4,

since trips intersecting with TransMilenio are more likely to be longer going from the outskirts to the city center),

TransMilenio has no impact on neither car nor bus speeds. Note this only identifies relative changes in speeds: any

aggregate effect TransMilenio had on the overall level of speeds would be absorbed into the intercept. Consistent

with a small congestion elasticity, Akbar and Duranton (2017) find the elasticity of speed with respect to the number

of travelers is only 0.06 during peak hours in Bogotá, while Akbar et. al. (2021) find that only 15% of differences in

driving speeds in Indian cities are due to congestion.

G.3 Impact on Housing Supply

Table A.15 provides evidence that TransMilenio had no significant impact housing development. The outcome

variable is the growth of total floorspace in a census tract between 2000 and 2018.95 The specification is otherwise

the same as from the baseline specification. Columns 1 and 2 show no significant impact of either CMA term on

floorspace supply. Column 3 provides a robustness check regressing floorspace supply on log distance to each phase

of the system, confirming the previous results. It does appear more development may be happening around the

third phase (the negative coefficient on ln Distance F3), but the effect is insignificant. Column 4 interacts distance

to each phase with a dummy for whether a tract is above the median tract distance from the CBD, to test if more

development is occurring near TransMilenio at the periphery. This does not appear to the case as all the interactions

are insignificant.

94Results are similar when intermediate years are included, and are omitted for clarity.
95I use the Davis-Haltiwanger growth rate gi = (Xit − Xit−1)/(0.5 × (Xit + Xit−1)) which allows me to incorporate tracts

with no development in 2000.
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Figure A.6 repeats the main event study from Figure 3 with floorspace area as the outcome, and shows no

significant effect either before or after on property development. While there is a noisy increase in development in

8 to 4 years before line opening, this is neither significant nor enough to show up in the aggregate numbers in Table

A.15.

Overall, there was no significant new development close to TransMilenio stations. Reports suggest that con-

straints to re-development restricted the supply response (Cervero et. al. 2013), in large part due to no significant

change in zoning regulations that remained unchanged over the period.

G.4 Impact on Wages and Sorting

Table A.16 examines the impact of market access on income by place of residence. It runs a difference-in-difference

specification similar to (16) to examine the effect of improved RCMA on log average weekly labor income reported

by full-time workers between 18 and 55 across UPZs. Since the survey is a sample survey, there are not many

observations in each census tract in each period and so the variation in RCMA is aggregated to the UPZ-level.

Standard errors are clustered by UPZ and Post-period pair in Panel A, and by UPZ in Panel B.

Column (1) shows a strong association between improved access to jobs and incomes over the period. However,

column (2) controls for the changing educational composition of workers and shows that about half of the relation-

ship is explained by re-sorting of workers by skill. The result is qualitatively unchanged when controlling for hours

worked in column (3) (i.e. when looking at the wage). While my cross-sectional data do not allow me to control

for individual fixed effects, that wages rise even when controlling for changing worker characteristics supports the

idea that CMA reflects accessibility to high-paid jobs. The last row also reports the results from a test of whether

the coefficient on log RCMA equals 1/θ, and in both panels this cannot be rejected.

Table A.17 examines TransMilenio’s impact on the educational composition of residents. The outcome is the

change in a tract’s share of college-educated residents between 2018 and 1993. In 1993 this is measured within

all adults 18 or older, and in 2018 this is measured within adults 40 and older. This is to try to look within a

cohort, since the overall college share grew substantially over this period. Results are not sensitive to this choice.

Column 1 shows a semi-elasticity of 0.05 of the change in the college share to the change in RCMA. Column 2

examines whether this is mechanical: if the change in RCMA is correlated with the initial college share there may

be mechanically more or less room for the share to increase in exposed locations. Controlling for the initial college

share has little qualitative effect on the coefficient, increasing it slightly. These results suggest the college educated

tended to move into neighborhoods with improved accessibility due to TransMilenio. This is consistent both with

the results in Table A.16, as well as the sorting channel in the model whereby the rich are more likely to move into

neighborhoods with appreciating house prices since they spend a smaller fraction of income on housing.

G.5 Impact of Both Types of CMA

The baseline model predicts no impact of FCMA on residential outcomes and no impact of RCMA on commercial

outcomes (see proof of Proposition 1). Table A.18 extends the baseline specification to include both types of CMA

separately in the regressions. In general, the results are noisy: conditional on the set of controls, there does not

appear to be a huge amount of residual variation in RCMA conditional on FCMA within a locality and vice versa.

For five out of seven outcomes (residential population, commercial prices, commercial floorspace share and census

employment) the basic prediction that RCMA affects residential outcomes and FCMA affects commercial outcomes
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holds in the data, although many of these specifications are noisy. For residential floorspace prices the effect is

similar for both types of CMA, although the effect is noisy and neither coefficient can be distinguished from zero.

For establishment counts in the CCB, the impact is positive only for RCMA.96

Even the fact that floorspace shares are observed to change to TransMilenio already suggests some basic as-

sumptions from the simple model are not borne out in the data, since it assumes floorspace use shares are fixed.

Appendix E.3 extends the model to include this, and shows that a weighted average of CMA types will now mat-

ter for outcomes in each location, where the weights depend on the initial floorspace shares across residential and

commercial uses. In fact, this would be the correct regression framework to use to fully test the model given that

changes in floorspace use shares are observed in the data. However the log-linear reduced form no longer holds

and the constant CMA elasticities are replaced with a more complex matrix of elasticities (where a location’s weight

on each change in CMA depends on its initial floorspace use share). Given the parsimony of the basic model, I focus

on this for the main results. The full model allows for endogenous floorspace use.

G.6 Main Results: Robustness

Table A.1 assesses the robustness of the main results to a number of alternative specifications. First, I use alternative

ways to aggregate mode-specific commute times and alternative travel speeds on each mode (columns 2 to 4).

Second, I vary the commute elasticity θ to 1.5 and 0.5 times its estimated value (columns 5 and 6). Third, I consider

only tracts within 3km a TransMilenio station to ensure the results are not driven by outliers at implausible distances

from the network (column 7). Fourth, I use heteroscedasticity robust standard errors and standard errors clustered

at the sector level (560 administrative units above the census tract) in columns 8 and 9. Fifth, I exclude tracts

within 1km of a portal (compared to the 500m exclusion in Table 2) to further ensure the results are not driven

by the targeting of these neighborhoods (column 10). Sixth, I control for distance to a tract’s closest TransMilenio

station interacted with distance to the CBD (column 11). This assesses whether the CMA effect is simply due to

heterogeneity of the distance effect at different distances from the CBD (a possibility given the trends in Figure 1).

Reassuringly, the results are robust to this, highlighting how the key source of identifying variation is local changes

in RCMA within localities.

Seventh, I run an unweighted regression for the change in establishments which is weighted by the initial

share of establishments in a tract in the main results (Table A.5). The unweighted results are significant as controls

are added, but become noisy and insignificant in the full specification in column 3 (p-value of 0.15). I use the

weighted regressions in the main results for two reasons. First, we might expect noise in the CCB data which is a

database of establishments registered with the city’s chamber of commerce rather than a census. Weighting by initial

shares places more weights on tracts where establishment growth is more precisely estimated. Second, I document

sharp positive impacts of CMA on the share of floorspace used for commercial purposes (another measure of the

changing allocation of real production activity). Taken together, these suggest employment is indeed responding to

TransMilenio.

96Digging into exactly why this result is occurring did not lead to clear conclusions. I interpret this as due to the finite sample
nature of the data whereby running enough specifications will lead to some unexpected results in a finite dataset.
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