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Table A.2: Aggregate Welfare Effects: Robustness

No Migration Migration

Panel A: Alt. Estimated Params

Baseline 2.28 0.60
IV 2.25 0.39
IV-Loc 2.45 0.67
Alternative Times 2.07 0.18
✓ OLS 2.57 0.69
✓ IV 1.16 0.29

Panel B: Alt. Calibrated Params

� = 4 2.53 1.19
� = 8 2.17 0.48
� = 0.8 2.51 0.70
� = 0.7 2.20 0.56
⇢ = 6 2.28 0.57

Note: Table shows the percentage change in average welfare (as defined in Table 6) under alternative parameter values using the sufficient statistics approach.
Panel A examines sensitivity to alternative values of estimated parameters. The first row recreates the baseline results. The second row uses the CMA elasticities
from the second column of Table 5 which instrument for the realized change in CMA (i.e. the term that does not hold residential population and employment
fixed at their initial value in the post-period) using the baseline measure. The third row uses the CMA elasticities from the third column of Table 5 when
instrumenting for the realized change in CMA using the LCP and Tram instrument. The fourth row uses the coefficients from column 6 of Table 2, using an
alternative method to aggregate mode-specific commute times. The fifth row uses an alternative value for ✓ = 3.97 estimated via OLS in column 3 of Table
A.20. The six row uses a value for ✓ = 6.15 estimated via IV using the LCP and Tram instrument in column 4 of Table A.20. Panel B varies the value of
calibrated parameters.
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Table A.3: List of Parameters and Sources of Identifying Variation

Panel A: Externally Calibrated Parameters

Parameter Description Identification Source

� Elasticity of substitution between labor
types

Card (2009)

�D Elasticity of demand Feenstra et. al. (2018)

Panel B: Internally Calibrated Parameters

Parameter Description Identification Source

↵s Cost Share of Commercial Floorspace Same as description

� Long-run housing expenditure share Expenditure share on housing at high income levels

↵sg Skill-specific labor demand shifters Share of industry wage bill paid to high-skill workers

h̄ Subsistence housing requirement Average expenditure on housing

pa Cost of cars Average expenditure on cars

Tg Location parameter of worker
productivity distribution

College wage premium

Panel C: Estimated Parameters

Parameter Description Identification Source

bm Travel mode preference shifter Mode choice shares conditional on travel times

 Dependence of commute costs on
travel times

Sensitivity of mode choices (within commutes) to travel times

� Correlation of preference shocks in
public mode nest

Differential sensitivity of mode choices to travel times amongst
public modes

✓g Commuting elasticity Sensitivity of commute choices to travel times (in changes)

⌘g Resident supply elasticity Sensitivity of residential populations to instruments for RCMA

µU,g Amenity externality Sensitivity of residential populations to shifts in the share of
high-skilled residents induced by instruments*

µA Productivity externality Sensitivity of model productivity residual to shifts in labor
supply induced by instruments for FCMA

*Note: Instruments are the differential growth inf instrumented RCMA for high-type vs low-type, and the growth of instrumented RCMA for high-skill
interacted with initial house prices (controls allowing for a separate effect of initial house prices on population growth also included).
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Table A.4: Multigroup Model: Robustness

Panel A: Main Robustness

Avg Welfare Inequality Output Rents

Baseline 1.007 0.546 2.091 2.143
Migration 0.146 0.044 4.496 5.032
�L = 2.5 1.294 0.444 2.045 2.188
Census Employment 1.009 0.545 2.092 2.148
� = 4 0.916 0.595 2.137 2.049
� = 9 1.077 0.512 2.060 2.201
✓ PPML 2.657 0.493 2.998 3.194
✓ PPML Diff 0.888 0.851 2.027 1.916
✓ OLS 1.960 0.237 2.687 2.945
Joint Pref. Shock 0.831 0.917 0.440 0.585

Panel B: Net Benefit Under Multigroup Model

No Migration Migration

% Net Increase GDP 1.47 3.88

Notes: Panel A shows main results (constructed in the same way as Table 9. Row 1 reproduces the main results. Row 2 uses the open city model with migration
elasticity of ⇢ = 3 for both groups. Row 3 uses a larger value of the elasticity of substitution between skill groups in production, using the value of 2.5 from
Card (2009) estimated at the MSA-level in the US. Row 4 uses census employment measured in 2005 instead of the CCB employment measured in 2015 as the
measure of employment in the baseline equilibrium. Rows 5 and 6 use alternative values for the elasticity of demand. Rows 7, 8 and 9 use alternative values
of ✓g estimated in columns 1, 3 and 5 of Table 7 respectively. Row 10 has a joint decision over residence and workplace location (with workers having an
idiosyncratic preference for each pair). Panel B recreates the net increase in GDP from Panel B of Table 6 for the multigroup model.

Table A.5: Unweighted Establishment Regressions

(1) (2) (3)

Weighted 2.101*** 1.787*** 1.168*
(0.611) (0.619) (0.604)

N 2,028 2,028 2,028
R

2 0.21 0.23 0.27

Unweighted 1.050* 1.175** 0.697
(0.550) (0.555) (0.547)

N 2,028 2,028 2,028
R

2 0.24 0.24 0.27

Locality FE X X X
Log Dist CBD X Region FE X X X
Basic Tract Controls X X X
Historical Controls X X
Land Market Controls X

Note: First row reports the establishment regressions from the first three columns of the main table (Table 2), where observations are weighted by a tracts share
of total establishments in the initial period. Second row reports the same specifications without weights. Heteroscedasticity and Autocorrelation Consistent
(HAC) standard errors (Conley (1999)) with a 0.5km bandwidth reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A.6: Gravity Equation: Single Group, Full Estimates

Panel A: Main Regression

PPML PPML OLS IV

ln Commute Cost -0.036** -0.039** -0.035* -0.071***
(0.017) (0.016) (0.020) (0.024)

N 710 710 576 576
Controls X Year FE X X X

Panel B: Alternative Clustering

PPML PPML PPML

ln Commute Cost -0.039** -0.039** -0.039*
(0.016) (0.018) (0.022)

N 710 710 710
Clusters 355 38 19
Clustering O-D O-t & D-t O & D

Note: Panel A Outcome is the commute shares in levels (PPML) or logs (OLS). Observation is an origin-destination-year cell. Only trips to work during
rush hour (hour of departure 4-8am) by individuals 18-55 are included. Data is from 1995 and 2015 mobility surveys. Columns 1-2 estimate PPML models,
3 and 4 OLS and IV models respectively. The last column instruments for travel times in the post-period using the the average change in times across the
LCP and tram instruments. Route-level controls are (i) the average number of crimes per year from 2007-2014, (ii) the average log house price in 2012 and
(iii) the share of the trip that takes place along a primary road along the least-cost routes between origin and destination. Robust standard errors are reported
in parentheses. Panel B repeats the baseline specification (column 2 of Panel A) with alternative levels of clustering (origin-destination pair; origin-year and
destination-year; origin and destination). * p < 0.1; ** p < 0.05; *** p < 0.01

Table A.7: Costs and Benefits

No Migration Migration

NPV Increase GDP (mm) 43619.74 211452.29
Capital Costs (mm) 1449.75 1449.75
NPV Operating Costs (mm) 7180.53 7180.53
NPV Total Costs (mm) 8630.28 8630.28
NPV Net Increase GDP (mm) 34989.46 202822.00
% Net Increase GDP 2.50 14.51

Table A.8: Note: Table shows the costs and net benefits, computing net present values (NPV) over a 50 year time horizon with a 5% interest rate. All
numbers are in millions of 2016 USD. The NPV of the increase in GDP is simply the NPV of the change in Bogotás GDP in dollar values. Capital costs are
the one-time infrastructure costs of building the network. Total costs are the one-time capital costs associated with building the network combined with the
NPV of operating costs. The NPV net increase in GDP nets this out from the gross gains in the first row, while the final row converts this back into a fraction
of 2016 GDP.
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Table A.9: ↵Hs Across Industries
Industry ↵Hs Relative HS Wage Bill

Domestic Services 0.160 0.055
Hotels & Restaurants 0.420 0.376
Social & Health Services 0.508 0.623
Transport & Storage 0.515 0.647
Construction 0.552 0.802
Wholesale, Retail, Repair 0.583 0.959
Manufacturing 0.599 1.056
Real Estate 0.601 1.066
Agriculture 0.628 1.254
Arts, Entertainment & Recreation 0.639 1.342
Other Services 0.701 2.016
Water Treatment and Distribution 0.729 2.441
Public Administration 0.769 3.322
Foreign Orgs 0.773 3.430
Elec, Gas 0.800 4.303
Social & Health Services 0.801 4.343
Information & Communication 0.804 4.458
Professional, Scientific and Technical Activities 0.837 6.154
Mining 0.846 6.761
Education 0.854 7.436
Financial Brokerage 0.865 8.455

Note: See Section D.2 for details.

Table A.10: Employment Data Summary Statistics

Year N Est. Mean Emp. p10 p50 p90

Panel A: Census

1990 219,812 5.41 1 2 7
2005 625,852 4.93 1 2 6

Panel B: Chamber of Commerce

2000 34,322
2015 126,867 2.37 1 1 4

Note: The first column provides the number of establishments in each dataset, column (2) provides the average employment while
columns (3)-(5) report percentiles of the firm size distribution. Employment is not reported in the raw 2000 Chamber of Commerce
establishment data.
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Table A.11: Trip Characteristics in 2015

Bus Car Walk TM

Share of all trips 0.343 0.137 0.360 0.161
Mean Distance (km) 6.683 6.178 1.526 10.487
Share of (trip purpose)

To work 0.478 0.150 0.158 0.214
Business trips 0.289 0.333 0.184 0.193
To school 0.292 0.042 0.502 0.164
Private matters 0.267 0.163 0.450 0.120
Shopping 0.149 0.121 0.678 0.052

Note: Table created using data from the 2015 Mobility Survey.

Table A.12: Commute Characteristics over Time

Mode Bus Car Walk TM

Panel A: Commute Shares

1995 0.74 0.17 0.09
2005 0.66 0.17 0.07 0.11
2011 0.46 0.16 0.19 0.19
2015 0.48 0.15 0.16 0.21

Panel B: Commute Speeds (kmh)

1995 16.31 25.37 8.20
2005 12.88 15.65 6.53 16.88
2011 10.49 14.02 7.95 13.08
2015 10.37 12.95 6.36 13.04

Panel C: Ownership shares

1995 0.29
2005 0.28
2011 0.25
2015 0.25

Note: Only trips to work included in trip-level data (car ownership is at the household level).
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Table A.13: Effect of TransMilenio on other Mode Speeds

Outcome: ln(Speed) (1) (2) (3) (4)

Panel A: Car Trips

TM Route X Post -0.107 -0.060 0.014 0.052
(0.086) (0.089) (0.064) (0.065)

R
2 0.80 0.80 0.80 0.80

N 9,916 9,916 9,916 9,916

Panel B: Bus Trips

TM Route X Post -0.164*** -0.074 -0.064 -0.020
(0.046) (0.047) (0.041) (0.040)

R
2 0.72 0.72 0.72 0.72

N 38,616 38,616 38,616 38,616

Route Measure Share TM Share TM TM>75% TM>75%
Baseline Controls X X X X
Locality Origin X Post FE X X X X
Locality Destination X Post FE X X X X
Log Distance X Post FE X X

Note: Observation is a UPZ Origin-UPZ Destination-Year. Outcome is log reported speed from the 1995 and 2015 Mobility Surveys. Share TM
is the share of a car trip’s least cost route that lies along a TM line. TM>75% is a dummy equal to one if the share is greater than 75%. Baseline
controls are a gender dummy, hour of departure dummies and age quantile dummies, each interacted with year dummies. Only trips to work
included during rush hours included. Panel A includes only trips by car, while panel B includes only those by bus. Standard errors clustered at the
origin-destination pair-level. p < 0.1; ** p < 0.05; *** p < 0.01
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Table A.14: Relationship between Predicted and Observed Times Over Time

(1) (2) (3) (4)

ln(Predicted Time) 0.705*** 0.511*** 0.655*** 0.697***
(0.034) (0.020) (0.032) (0.023)

Post 0.317* -0.662*** 0.151
(0.190) (0.126) (0.216)

ln(Predicted Time) X Post 0.018 0.187*** 0.046
(0.051) (0.030) (0.052)

Car -0.037
(0.167)

TM 0.020
(0.193)

ln(Predicted Time) X Car 0.026
(0.044)

ln(Predicted Time) X TM 0.003
(0.047)

R
2 0.42 0.34 0.39 0.42

N 2,219 6,671 2,419 5,005
Mode Car Bus TM All
Post Only X

Note: Observation is a UPZ Origin-UPZ Destination-Year. Outcome is log reported time from Mobility Survey. Post is a dummy equal to one in 2015 and
zero in 1995 (2005 for TM). Trips include journeys to and from work during rush hour (hour of departure between 5 and 8 am, hour of return between 4 and
6pm). Individual observations averaged to the trip-year level, and regressions weighted by number of individual observations in each trip-year-mode. Columns
(1)-(3) include observations for pre- and post years and consider only one mode; column (4) includes only observations from the post period and includes all
modes. Robust standard errors in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01
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Table A.15: Effect of TransMilenio on Growth in Floorspace

Outcome: Floorspace Growth (1) (2) (3) (4)

� ln RCMA -0.084
(0.211)

� ln FCMA -0.106
(0.286)

ln Distance F1 0.014 0.013
(0.014) (0.018)

ln Distance F2 0.016 0.009
(0.015) (0.020)

ln Distance F3 -0.014 -0.019
(0.026) (0.027)

ln Distance F1 X Far CBD 0.005
(0.025)

ln Distance F2 X Far CBD 0.014
(0.026)

ln Distance F3 X Far CBD 0.002
(0.039)

N 2,235 2,233 2,205 2,205
R

2 0.34 0.34 0.33 0.33

Note: Specification is baseline specification from main table with full controls (column (3)), but outcome is growth in floorspace between 2018 and 2000
using the Davis-Haltiwanger measure. In column 3 the coefficients report the log distance from the closest station in each phase of TransMilenio. Column 4
interacts this with a dummy for whether the tract is above the median distance from the CBD (Far CBD). The full interaction is included. Heteroscedasticity
and Autocorrelation Consistent (HAC) standard errors (Conley (1999)) with a 0.5km bandwidth reported in parentheses. *p<0.1; ** p < 0.05; *** p < 0.01
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Table A.16: TransMilenio’s Effect on Income

(1) (2) (3)

Panel A: Clustered by UPZ X Post

ln(RCMA) 0.982*** 0.510** 0.522**
(0.349) (0.224) (0.224)

N 87,674 87,673 87,673
R

2 0.48 0.56 0.1563
P-val Coef = 1/✓ 0.31

Panel B: Clustered by UPZ

ln(RCMA) 0.982** 0.510* 0.522*
(0.451) (0.288) (0.287)

N 87,674 87,673 87,673
R

2 0.48 0.56 0.1563
P-val Coef = 1/✓ 0.43

UPZ FE X X X
Region X Year FE X X X
Log Dist CBD X Region X Year FE X X X
Basic Tract Controls X Year FE X X X
Historical Controls X Year FE X X X
Land Market Controls X Year FE X X X
Basic Worker Demographics X Year FE X X X
Education X Year FE X X
Hours Worked X Year FE X

Note: Outcome variable is the log average weekly labor income for full-time, working age (18-65) individuals reporting more than 40 hours worked per week.
Data covers 2000-2005 in the pre-period and 2015-2019 in the post period and comes from the ECH and GEIH. Post is a dummy for the post period. RCMA
is measured at the UPZ-level using the pre-TM network in the pre-period, and using the 2013 network in the post-period, and at the UPZ-level. Region are
dummies for the North, West and South of the city. Controls present are the same as in the main specification (interacted with year dummies), other than basic
worker demographics which contain dummies for age (ine 10 year bins) and gender. Columns 2 and 3 contain dummies for each category of highest education
level attained. Column 3 contains dummies for hours worked per week in 10 hour bins. Standard errors are clustered by UPZ and period. The p-value tests the
null that the coefficient on log RCMA equals 1/✓ as predicted by the model, with ✓ = 3.39. Standard errors are clustered by UPZ and Post in Panel A, and by
UPZ in Panel B. * p < 0.1; ** p < 0.05; *** p < 0.01.

Table A.17: TransMilenio’s Effect on the College Share of Residents

(1) (2)

� lnRCMA 0.053* 0.061**
(0.031) (0.031)

N 2,106 2,106
R

2 0.15 0.18
Init. Coll Share X

Note: Outcome is the change in the share of college educated residents in a tract between 1993 and 2018. Specification includes all controls from baseline
specification, excluding the initial college share in column 1 but including it in column 2. HAC standard errors are reported with a 500m bandwidth. *
p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A.18: Impacts of Both Types of CMA

(1) (2) (3)

Panel A: Residents

� ln(Res Price) � ln(Res Pop)
�lnRCMA 0.187 1.048***

(0.176) (0.388)

�lnFCMA 0.307 -1.107
(0.242) (0.677)

N 2,161 2,228
R

2 0.43 0.37

Panel B: Firms, Floorspace

� ln(Comm Price) � Comm Share
�lnFCMA 0.441 0.553***

(0.321) (0.101)

�lnRCMA 0.160 -0.352***
(0.279) (0.070)

N 2,048 2,194
R

2 0.11 0.16

Panel C: Firms, Employment

� ln(Est, CCB) � ln(Emp, Census) � ln(Emp Formal, Census)
�lnFCMA -1.127 1.384 2.562

(0.832) (1.179) (1.577)

�lnRCMA 3.419*** 0.036 -0.869
(0.769) (0.519) (0.801)

N 2,028 1,943 1,653
R

2 0.28 0.23 0.16

Note: Table repeats the baseline specification i.e. column (3) from Table 2 and columns (1) and (3) from Table 4 for census employment, including both the
change in RCMA and FCMA in the same regression. Heteroscedasticity and Autocorrelation Consistent (HAC) standard errors (Conley (1999)) with a 0.5km
bandwidth reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A.19: Commuting in 1995

lnSpeed lnSpeed Bus Bus

Bus -0.363*** -0.309***
(0.020) (0.016)

Low-Skill 0.287*** 0.163***
(0.010) (0.011)

R
2 0.06 0.76 0.18 0.47

N 14,945 12,975 18,843 16,461
UPZ O-D FE X X
Time of day Controls X X X X
Demographic Controls X X X X

Note: Data is from 1995 Mobility Survey. Low-Skill is a dummy for having no post-secondary education. Bus is a dummy for whether
bus is used during a commute, relative to the omitted category of car. Time of day controls are dummies for hour of departure, and
demographics are log age and a gender dummy. UPZ O-D FE are fixed effects for each upz origin-destination. Only trips to work
during rush hour (hour of departure between 5-8am) included. Standard errors clustered at upz origin-destination pair. * p < 0.1; **
p < 0.05; *** p < 0.01

Table A.20: Aggregate Gravity Equation

PPML PPML OLS IV

ln Commute Cost -0.036** -0.039** -0.035* -0.071***
(0.017) (0.016) (0.020) (0.024)

N 710 710 576 576
Controls X Year FE X X X

Note: Outcome is the log number of commuters between each origin and destination locality pair in 1995 or 2015. Only trips to work during rush hour
(5-8am) by heads of households included. Fixed effects for each origin locality-year, destination locality-year, and origin-destination pair included in each
specification. Controls include (i) the average number of crimes per year from 2007-2014, (ii) the average log house price in 2012 and (iii) the share of the
trip that takes place along a primary road along the least-cost routes between origin and destination. Columns 1 and 2 run PPML specifications (with column
2 corresponding to the main value from the text), column 3 runs OLS and column 4 runs an IV using the same instrument as column 3 of Table 5. Standard
errors clustered at the origin-destination pair-level are reported.* p < 0.1; ** p < 0.05; *** p < 0.01
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B Additional Figures

Figure A.1: TransMilenio Network and Bogotá

(a) TransMilenio Routes

TransMilenio Lines
Phase I

Phase II

Phase III

Feeder Routes

(b) Population Density in 1993
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Figure A.2: TransMilenio Routes: Before and After

(a) Previous bus lanes, Avenida Caracas (Sur) (b) TransMilenio Station, Avenida Caracas (Norte)
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Figure A.3: Planned Networks From Previous Studies

(a) Ineco-Sofretug, 1981 (b) Intermetro-SPA, 1987

(c) JICA, 1996 (d) Bechtel-Systra-Ingetec, 1997

Note: Each panel corresponds to the plan by a different consortium of consultants, in the corresponding year. The colored lines are the
proposed networks (dashes sometimes indicating different lines), the black dashed line is the limit of the city in that year. Images obtained from
https://www.metrodebogota.gov.co/sites/default/files/documentos/Producto%2015.%20Tomo%201.%20Formulación%20y%20caracterización%20de%20las%20alternativas%20de%20red%20de%20metro_0.pdf?width=800&height=800&iframe=true.
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Figure A.4: Planned Networks From Previous Studies
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Regression of the observed change in the data on the model-predicted change has
 coefficient 1.598 (0.822),and a p-value for the F-test that the slope is 1 of 0.467.

Note: Graph plots a binscatter (50 bins) the observed change in the share of floorspace used for residential purposes in the data (y-axis) vs the
model (x-axis). Both are normalized to have unit mean on the plot. Graph caption also reports results from regression of the change in the share
of floorspace used for residential purposes in the data on that from the model.
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Figure A.5: College Share in Observed vs Counterfactual Equilibrium with Faster TM
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Note: Graph shows share of high-skill residents in tracts in 100m cells from their nearest TransMilenio station. 1500m cell includes all tracts
1500m or more from their nearest station. Red bars show the observed shares in the post-period, blue bars show those from a counterfactual
where TransMilenio runs at 35 km/h.

Figure A.6: Event Study on Floorspace Area
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Note: Figure plots event study similar to Figure 3 but using log floorspace area as the outcome.
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Figure A.7: Employment in Chamber of Commerce vs Census

(a) 2015 Establishment Comparison by Locality
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Correlation is 0.948

(b) 2000 Establishment Comparison by Locality
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Correlation is 0.949

(c) Establishment Comparison by Sector
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Correlation is 0.901 in 2015, 0.745 in 2000.

Figure A.8: Cadastral vs Reported Property Values
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Note: Reported value is the reported purchase price per room as observed in the Multipurpose survey in 2014, for properties bought after 2005
(both the purchase price and year are reported). The cadastral value is the average residential property value per m2 in the locality in that year.
Prices are averaged over the period, and normalized so that each variable has mean one.
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Figure A.9: Engel Curves for Car Ownership and Housing

(a) Car Ownership
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Data is from 1995 Mobility Survey.

(b) Housing Expenditure
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Data covers 2005-2014. Income is predicted from a regression of age bins interacted with (i) education,
(ii) occupation and (iii) gender dummies. Housing expenditure includes rents; only renters included.

Figure A.10: Computed vs Observed Commute Times
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Regression slope is 0.522 in 1995 with an R2 of 0.307, and 0.715 in 2015 with an R2 of 0.406.

(b) Cars
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Regression slope is 0.723 in 1995 with an R2 of 0.373, and 0.746 in 2015 with an R2 of 0.357.

(c) TransMilenio
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Regression slope is 0.657 in 2005 with an R2 of 0.308, and 0.713 in 2015 with an R2 of 0.261.

Note: Figures plot the average reported trip time between pairs of UPZs in the Mobility Survey versus the times computed in ArcMap using
the pre speeds for 1995 and post speeds for 2015. Only trips to and from work during rush hour included. Marker size is proportional to the
number of commuters in each pairwise combination (reported coefficients from regressions weighted by this number).
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Figure A.11: Instruments

(a) Raw Land Use Map 1980 (b) Cost Raster

(c) LCP Instrument

Least Cost Paths
TransMilenio System 2006

(d) Tram Instrument

Tram Route 1921
Tram Route 1921 Extended
TransMilenio System 2006
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C Using A Special Case of the Model to Derive Sufficient Statistics for the
Impact of Transit Infrastructure on Economic Activity

This section considers a special case of the model where there is one type of worker and firm, no fixed element

of expenditure or income and a fixed allocation of floorspace to residential and commercial use. For simplicity, I

assume workers make a joint decision over home and workplace but this is later relaxed to have separate decisions

as in the main model. This special case is shared by a wider class of quantitative urban models. Section C.1 sets

up and characterizes this simple model from scratch, and shows it admits a reduced form representation where

changes in endogenous variables can be written as log-linear functions of changes in CMA. Section C.2 shows that

(i) the change in CMA and elasticities of economic activity to CMA turn out to be sufficient statistics that speak to

the impact of transit infrastructure on aggregate outcomes (such as house prices, output and welfare) as well as the

reorganization of activity across space. Section C.5 derives a relationship between first order welfare effects in this

class of general equilibrium models and the value of time savings approach typically used to evaluate gains from

transit infrastructure. Section C.8 provides proofs for the results in this section.

C.1 A Simple Quantitative Urban Model

Setup. I consider a simple quantitative model of a city in the spirit of Ahlfeldt et. al. (2015) and Allen et. al. (2015).

There are i 2 I locations that differ in their exogenous amenities ūi, productivities Āi, residential and commercial

floorspace supplies HRi, HFi and the time tij it takes to commute to any other location.53 A continuum of workers

with mass L̄ choose where to live and work and have Cobb-Douglas preferences over a freely-traded numeraire

good and housing. Commuting reduces effective labor supply at workplace so that an individual living in i and

working in j receives income wj/dij , where dij = exp(tij) converts commute times into commute costs. In each

location, a representative firm produces a freely traded variety under perfect competition that are aggregated by

consumers in CES fashion to form the final numeraire good.

Individuals. Indirect utility across pairs of residential and employment locations (i, j) is given by

Uij(!) =
uiwjr

��1
Ri

dij
✏ij(!), (21)

where ✏ij(!) is an idiosyncratic productivity for worker ! on commute (i, j), 1�� is the expenditure share on hous-

ing, and ui is the amenity enjoyed by residents who live in i. To allow for the possibility of local spillovers, amenities

depend on both exogenous location characteristics ūi and the number of residents through ui = ūiL
µU

Ri . Workers

choose the commute pair that maximizes their utility. Assuming these are drawn iid from a Frechet distribution

with shape parameter ✓ yields a simple expression for the number of commuters for each live-work pair

Lij = L̄Ū
�✓

 
uiwjr

��1
Ri

dij

!✓

, (22)

53Appendix G shown housing supply was unaffected by TransMilenio, so I consider these as fixed location characteristics.
This assumption is relaxed in Section 5.3. Appendix G also shows that there were no significant relative changes in car and bus
speeds along routes most affected by TransMilenio, so I assume travel times are fixed in the baseline model. This is relaxed in
Panel C of Table 6.
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where Ū = �

hP
ij(uiwjr

��1
Ri /dij)✓

i1/✓
is average utility, � = �

�
✓�1
✓

�
and �(·) is the Gamma function. The supply of

residents and workers to each location can be computed by summing these flows over all destinations and origins

respectively to get

LRi = L̄Ū
�✓

⇣
uir

��1
Ri

⌘✓
�Ri (23)

LFj = L̄Ū
�✓

w
✓
j�Fj . (24)

The �Ri and �Fi terms are what I refer to as commuter market access terms. Residential commuter market

access (RCMA) �Ri =
P

j(wj/dij)✓ reflects residents’ access to well-paid jobs from location i. Firm commuter

market access (FCMA) �Fj =
P

i(uir
��1
Ri /dij)✓ reflects firms’ access to workers from location j (i.e. being close to

locations with high amenities or low rents). The resident supply curve (23) therefore tells us that more residents will

move to locations with high amenities, low house prices, and better access to well-paid jobs through the commuting

network. The labor supply curve (24) tells us that firms will attract more workers to locations with high wages and

better access to workers via the commuting network.

The supply of effective labor units to a location can be computed by leveraging that, under the Frechet dis-

tribution, the average productivity of workers who have chosen (i, j) is inversely related to the share of workers

choosing that pair ✏̄ij / ⇡ij
�1/✓ where ⇡ij = Lij/L̄. Total effective labor supply is simply L̃Fj = L̄

P
i ⇡

✓�1
✓

ij /dij ,

which simplifies to

L̃Fj = L̄Ū
�(✓�1)

w
✓�1
j �̃Fj (25)

where �̃Fj =
P

i(uir
��1
Ri )✓�1

d
�✓
ij is adjusted FCMA capturing access to effective units of labor.

Consumers spend a constant fraction 1� � on housing, so that residential floorspace (inverse) demand is given

by

rRi =
1� �

HRi
ȳiLRi, (26)

where ȳi ⌘ �1/✓
Ri L

�1/✓
Ri is average income of residents in i.54

Firms. The production side of the model assumes an Armington structure with no trade costs. In each location, a

representative firm produces a differentiated variety using the Cobb-Douglas technology Yi = AiL̃
↵
FiH

1�↵
Fi . As for

amenities, I allow for the possibility of productivity externalities of the form Ai = ĀiL̃
µA

Fi .55 Solving firms’ profit

maximization problem delivers labor demand

L̃Fi =
1

↵
w

↵(1��)�1
i A

��1
i r

(1��)(1�↵)
Fi E (27)

where E =
P

i ȳiLRi is aggregate expenditure and � is the elasticity of demand across varieties. Firm (inverse)

54See Appendix C.8.4 for a derivation. The model with separate residential and employment location decisions covered in
Appendix C.6 has the more familiar form ȳi ⌘ �1/✓

Ri
.

55Given evidence on highly localized spatial spillovers (Rossi-Hansberg et. al. 2010; Ahlfeldt et. al. 2015), I do not allow for
spillovers across locations given the size of census tracts. Previous versions of the paper show how the regression framework in
that model still holds but outcomes depend both on a location’s own CMA and those nearby.
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demand for commercial floorspace is given by

rFi =

 
A

��1
i w

�↵(��1)
i P

��1
E

(1� ↵)HFi

! 1
1+(��1)(1�↵)

(28)

Equilibrium. Given model parameters {↵,�,�, ✓,, µU , µA} and location characteristics {HRi, HFi, tij , ūi, Āi}, an

equilibrium of the model is a vector {LRi, L̃Fj , wj , rRi, rFj , Ū} such that (i) the supply of residents and labor is

consistent with worker optimality (23) and (25), (ii) the demand for labor is consistent with firm optimality (27),

(iii) demand for floorspace is consistent with firm and worker optimal and equals supply (26) and (28) and (iv) the

population of the city L̄ is fixed, and welfare Ū is given by Ū = �

hP
ij(uiwjr

��1
Ri /dij)✓

i1/✓
.56

C.2 Sufficient Statistics for Impacts of Transit Infrastructure

The following proposition shows how the model and related extensions admit a simple reduced form and sufficient

statistics approach to quantify the impacts of changes in transit infrastructure.

Proposition 1. Consider a change in commute costs from d to d0, and let x̂ ⌘ x
0
/x denote relative changes in a variable

between the pre- and post-period. Then

Part 1: Reduced Form. The model yields a reduced form where endogenous variables can be written as log-linear functions

of CMA as

ln ŷi = �R ln �̂Ri + �̃1,F ln �̂Fi + �̃2,F ln ˆ̃�Fi + ei

⇡ �R ln �̂Ri + �F ln �̂Fi + ei

where yi = [LRi, rRi, rFi, LFi] and ei is a vector of structural residuals. �F and �R have zero elements in the first and

last two entries respectively, so this is a system of 4 univariate regressions yielding 4 coefficients �LR
,�rR ,�rF ,�LF

. Unique

(to-scale) values of the CMA terms �Ri,�Fi can be computed given data {LRi, LFi, dij} and the commuting elasticity ✓.

While the first line holds exactly (given the values for �̂Ri, �̂Fi,
ˆ̃�Fi which also depend on L̂Ri, L̂Fi), the second lines uses the

first-order approximation ln ˆ̃�Fi ⇡ ✓�1
✓ ln�Fi around d

�✓
ij = 0.

Part 2: Relative Impacts of Transit Infrastructure. Assuming that exogenous, location-specific characteristics are un-

changed by the infrastructure, relative changes in endogenous variables ˆ̂yi ⌘ ŷi

�
(
Q

r ŷi)
1/I can be computed using (i)

estimates of �LR
,�rR ,�rF ,�LF

, ✓, (ii) data on the initial distribution of economic activity {LRi, LFi, dij} and (iii) data on the

change in commute costs {d̂ij}.

Part 3: Level Impacts of Transit Infrastructure. Level changes in endogenous variables ŷi and endogenous constants
ˆ̄
L,

ˆ̄
U can be computed from the relative changes obtained in part 2 with (i) an assumption on population mobility between the

city and the rest of the country, and (ii) values for �,�.

Part 4: Isomorphisms. Parts 1 and 2 apply to a more general class of models which feature (i) a gravity equation for com-

mute flows and (ii) an equilibrium that can be written as a system of K equations in K endogenous variables {y1i, . . . , yki}Ii=1

56Existence of the equilibrium and conditions for uniqueness were established in a previous version of the paper. Alternative
assumptions over population mobility between Bogotá and the rest of the country are covered in Proposition 1.
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of the form
KY

k=1

y
↵kh

ki = �h�
bR
h

Ri�
bF
h

Fieih for h = 1, . . . ,K.

These models will yield the same counterfactual changes in outcomes (relative to city-wide averages) as those from the base-

line model, given estimates of �R,�F , ✓. This class includes models with endogenous firm location choice, Eaton and Kor-

tum production, capital in the production function, endogenous housing supply, leisure, preference rather than productivity

shocks, and alternative residential and employment supply elasticities and timing assumptions. However, the overall level of

changes and changes in endogenous constants will depend on (a subset of) the particular structural parameters of the model

{{↵kh}k, bRh , bFh }h, and are not determined by the reduced form elasticities alone.

The implications of these results are now discussed in turn.

Reduced Form Representation. The first part of Proposition 1 shows that the transit network only matters for

equilibrium outcomes through the two CMA variables. In fact, the change in the entire distribution of economic

activity across the city between two periods depends only on the change in CMA as well as a structural residual that

reflects changing location fundamentals (productivities, amenities and floorspace supplies).57 This system reduces

to a system of 4 univariate regressions, where residential outcomes depend on RCMA and commercial outcomes

depend on FCMA.

These CMA terms can be easily recovered using data on residential populations, employment, commute costs

and the commuting elasticity ✓. This ensures estimation of the reduced form is straightforward, even if CMA is not

directly observed in the data. The proof of Proposition 1 shows that the CMA terms are the unique to-scale solution

to the system given in (18) and (19) in the paper. It also discusses the approximation used collapse the reduced form

that contains three CMA terms �Ri,�Fi, �̃Fi into one with just �Ri,�Fi. This choice is made both for parsimony

and empirical feasibility (the correlation between �Fi and �̃Fi is 0.98 in the data). The unapproximated reduced

form is used to conduct counterfactuals, with a simple adjustment made to the coefficients from the approximated

reduced form to map them to the coefficients from the unapproximated system (see proof in Appendix C.8.1 for

details).

Counterfactual Impacts of Transit Infrastructure. Part 2 of Proposition 1 shows that relative changes in endoge-

nous variables across the city in response to a change in commute costs can be computed using data on the initial

distribution LRi, LFi, dij , the change in commute costs d̂ij , the commuting elasticity ✓, and the reduced form pa-

rameters �LR
,�rR ,�rF ,�LF

. In other words, these data and parameters are sufficient statistics for the change in

economic activity across the city in response to changes in transit infrastructure. As shown in the proof, the elastici-

ties and the change in CMA are the sufficient statistics; the data on initial economic activity and changes in commute

costs are necessary to compute the change in CMA.

Part 3 shows that computing both the level change in endogenous variables as well as the change in equilibrium

constants requires slightly more structure. These require an assumption on population mobility into the city from

the rest of the country, and values for two parameters � and � that cannot be estimated from the reduced form.

These must be specified in some other way by the researcher, for example by calibrating to external values or

aggregate moments.
57The contents of the residual and reduced form parameters are outlined in Appendix C.7. The residual contains changes

in unobserved amenities and residential floorspace for residential outcomes, and changes in unobserved productivities and
commercial floorspace for commercial outcomes.

26



Part 4 shows that some of these results apply more generally to a wider class of models which feature a gravity

equation for commute flows and a log-linear equilibrium representation. Despite having different underlying struc-

tural parameters, these models yield the same log-linear reduced form. Since part 2 requires only values of these

reduced form elasticities to compute relative changes in activity across the city in response to changes in the transit

network, they yield the same (relative) counterfactual impacts as the baseline model. This result is particularly use-

ful because the researcher does not need to take a stand on which particular modeling assumption is true; each will

yield the same counterfactual impact on relative outcomes as the baseline model conditional on the reduced form

estimates �R,�F . Where the modeling assumptions do come into play is in determining the overall level of changes

and aggregate effects (such as welfare). As the example in part 3 shows, this depends on the underlying structural

parameters of the model. However if the researcher is ready to take a stand on the value of those parameters in

their model, then these aggregate impacts can be computed using the procedure shown in the proof of part 3 and

the values of the particular structural parameters of that model.

C.3 Estimating Demand for Travel Modes

Standard results on GEV distributions imply that the choice probabilities are

⇡m|ija = ⇡k|ija ⇥ ⇡m|ijka

=

⇣P
n2Bk

exp
⇣
bn � 

�k

tijn

⌘⌘�k

P
k0

⇣P
n2B

k0 exp
⇣
bn � 

�
k0
tijn

⌘⌘�
k0

⇥
exp

⇣
bm � 

�k

tijm

⌘

P
n2Bk

exp
⇣
bn � 

�k

tijn

⌘

where bm ⌘ �b̃m/�k. That is, the probability a worker chooses mode m can be decomposed into the probability

they choose the nest containing m and the probability they choose the mode from the options available in that nest.

This is estimated via MLE as described in the main text.

C.4 Estimating the Commute Elasticity ✓

Taking logs and first differences of the expression for commute flows (22) yields a gravity equation relating the

change in commute flows to changes in commute times

lnLijt = ↵ij + �it + �jt � ✓tijt + "ijt, (29)

where ↵ij , �it and �jt are origin-destination, origin-year and destination-year fixed effects. While other estimation

approaches typically leverage cross- sectional variation, this paper uses the change in commute times induced by

TransMilenio to difference out time-invariant characteristics potentially correlated with commute times. Changes

in origin- or destination- specific unobservables—such as amenities and productivities—are absorbed in the fixed

effects.

Commute times tijt are formed using the same mode choice model as in the general model, but incorporating

car ownership according to an exogenous probability rather than an endogenous decision. Workers become car

owners according to a Bernoulli distribution with parameter ⇢car. Expected utility conditional on car ownership is

Uijm|a(!) =
uiwjr

��1
Ri ✏ij(!)

exp (tijm + �ijm(!))
.
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Expected utility prior to drawing the mode-specific preference shocks shocks is given by

Ea

h
max
m

�
Uijm|a(!)

 i
= uiwjr

��1
Ri ✏ij(!)⇥


⇢carE


max

m2M1

{1/dijm(!)}
�
+ (1� ⇢car)E


max

m2M0

{1/dijm(!)}
��

=
uiwjr

��1
Ri ✏ij(!)

exp (t̄ij)

where

tij = � 1


ln [⇢car exp (�t̄ij1) + (1� ⇢car) exp (�t̄ij0)]

where t̄ij0 = ��

ln

X

m2BPublic

exp
⇣
bm � 

�
tijm

⌘

t̄ij1 = � 1


ln (exp(bcar � tijCar) + exp (t̄ij0)) .

The expressions t̄ij0, t̄ij1 are exactly the same car-ownership-specific commute time indices as in the baseline

model. The only difference is that they are averaged using the parameter ⇢car which reflects the probability of

owning a car. I then compute t̄ijt for different years, where variation over time is induced by the changes in the

TransMilenio network. I set ⇢car = 0.181 equal to the share of car owners in 2015.

The estimates for (29) are presented in Table A.6. Columns 1 and 2 run PPML regressions to account for the

presence of zeros in the data. Controlling for route observables interacted with year fixed effects implies a value of

✓ = 3.398 reported in Table 1. Column 3 runs the same regression via OLS which do not account for pairs with zero

commute flows, finding similar but mildly smaller estimates. The last column instruments for the change in travel

times using the instrument from Section 5 for travel times in the post-period, delivering a larger estimate.

C.5 First Order vs Equilibrium Effects

The standard approach to evaluate the gains from transit infrastructure is based on the Value of Travel Time Savings

(e.g. Small and Verhoef 2007), in which its benefits are given by minutes saved times the value of time. The following

proposition shows that under certain conditions, this is precisely the first order welfare impact from a change in

infrastructure in the full general equilibrium model.

Proposition 2. In a version of the baseline model with (i) no amenity or productivity spillovers, (ii) preference shocks over

residential locations, (iii) workers owning an equal share of all floorspace and (iv) a labor income tax 1/(1 + ✓) redistributed

lump sum, the elasticity of welfare to a change in commute costs is

d ln Ū = �↵�
X

ij

wijLijP
rs wrsLrs

dtij , (30)

where wij is average labor income of commuters along pair (i, j).

The proof of the proposition first establishes that under these conditions the equilibrium is efficient. An appli-

cation of the envelope theorem then shows that—to a first order—only the time savings from new infrastructure

matter for welfare. This is simply proportional to a labor income-weighted average of the commute time reductions,

scaled by  and ↵�. The former converts commute times to commute costs, while the latter reflects that a share of
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the gains go to floorspace owners rather than directly to workers.58 Lastly, as explained in the proof of the propo-

sition, technical reasons require the restrictions (ii)-(iv) to be imposed to derive this result. However, simulations

of small shocks in the model from Section C.1 with only condition (i) imposed confirm this expression correctly

captures the first order welfare effects in that model as well.

C.6 Examples of Isomorphic Models in Proposition 1

Sorting of Individual Entrepreneurs. Consider a production side where each variety is produced by a monopolist

who can choose where to locate in the city. The entrepreneur has the same Cobb-Douglas production function over

labor and commercial floorspace, so profits are a fraction 1/� of sales. Entrepreneurs have idiosyncratic preferences

for producing in each block so that the return from locating in j is given by

Vj(!) = ⇡j✏j(!)

where ⇡j = �̄

⇣
w

↵
j r

1�↵
Fj /Aj

⌘1��
E

where �̄ ⌘ �
��(� � 1)�(��1) and ✏j(!) is the preference of entrepreneur ! in to produce in j. If these preferences

are drawn from a Frechet distribution with shape ✓F > 1, then (normalizing the mass of firms to 1) the number of

firms producing in j is

Nj =

⇣
Aj/w

↵
j r

1�↵
Fj

⌘✓F (��1)

P
s

�
As/w

↵
s r

1�↵
Fs

�✓F (��1)

The wage bill is a fraction ↵��1
� of sales so wj`j = ↵ (�/(� � 1))��

⇣
w

↵
j r

1�↵
Fj /Aj

⌘1��
E. Since total labor demand is

simply L̃Fj = Nj`j , we find that

L̃Fj = ↵ (�/(� � 1))��
Ū

�1/✓F (��1)
F ⇥A

(1+✓F )(��1)
j w

�(1+(1+✓F )↵(��1))
j r

�(��1)(1�↵)(1+✓F )
Fi E

where ŪF =
hP

s

�
As/w

↵
s r

1�↵
Fs

�✓F (��1)
i1/✓F (��1)

. Using the same logic as for labor, demand for commercial floorspace

is

HFj = (1� ↵) (�/(� � 1))��
Ū

�1/✓F (��1)
F ⇥A

(1+✓F )(��1)
j w

�(1+✓F )↵(��1)
j r

�(��1)(1�↵)(1+✓F )�1
Fi E.

Since floorspace is fixed, this is the commercial floorspace clearing condition.

Only the labor demand and commercial floorspace market clearing conditions have changed. Since they have

the same log-linear parametric structure, the same reduced form representation as in the baseline model will hold.

To see how, the equilibrium system becomes

LRi = L̄Ū
�✓

⇣
uir

��1
Ri

⌘✓
�Ri

LFj = L̄Ū
�✓

w
✓
j�Fj

L̃Fj =
�
L̄Ū

�✓
� ✓�1

✓
w

✓�1
j �̃Fj

L̃Fj = ↵ (�/(� � 1))��
Ū

�1/✓F (��1)
F w

(1+✓F )↵(1��)�1
j A

(1+✓F )(��1)
j r

(1�↵)(1��)(1+✓F )
Fi E

rRi =
1� �

HRi
�1/✓

Ri L
✓�1
✓

Ri

58While these gains ultimately make their way back to workers who own the housing stock, these equilibrium price effects do
not matter to a first order.
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rFi =

 
(1� ↵) (�/(� � 1))��

Ū
�1/✓F (��1)
F

A
(1+✓F )(��1)
j w

�(1+✓F )↵(��1)
j E

HFi

! 1
1+(��1)(1�↵)(1+✓F )

where the CMA definitions are unchanged. Using the third line to substitute out for wages and ignoring the sec-

ond line (which pins down LFj given the other variables of the model), we arrive at a system of 4 equations in

{LRi, L̃Fi, rRi, rFi} given {�Ri, �̃Fi}

L
1�✓µU

Ri r
✓(1��)
Ri = �1�Riū

✓
i

L
� ✓�1

✓

Ri rri = �2�
1/✓
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(��1)
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where the (endogenous) constants are given by �1 ⌘ L̄Ū
�✓, �2 = 1��, �3 ⌘ (1�↵) (�/(� � 1))��

Ū
�1/✓F (��1)
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�
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and �4 ⌘ ↵ (�/(� � 1))��
Ū

�1/✓F (��1)
F

�
L̄Ū

�✓
�� 1+(1+✓F )↵(��1)

✓
E. This is of the same parametric form as the system

(51), and thus admits the same reduced form as the baseline model. To see this explicitly for this example, write the

system in changes and take logs to get
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✓F (��1) ln

ˆ̄
UF

3

77775

By the results of part (iv), the relative impacts of changes in the commuting network are the same in this model

as the baseline model given estimates of ✓ and the reduced form elasticities. (Note the reduced form elasticities

have the same parametric form in this model as the baseline, since �F ,�R have zero entries in the first and last two

entries respectively.) The level effects would differ, however, since these depend on the structural parameters that

appear in the A matrix and the error term e.

Endogenous Housing Supply. Consider an extension of the model in which housing floorspace for each type

of floorspace is produced using land Ti and capital Ki according to a Cobb-Douglas production function Hi =

T
1�⌘
i K

⌘
i . Capital is freely traded across the city with price pK . Each unit of land is owned by an atomistic developer

who chooses hi = k
⌘
i units of housing to construct per unit of land, where ki units of capital are used per unit

of land. Profit maximization by developers yields a density of development hi = (⌘ri/pK)1/(1�⌘). Total housing

supply is therefore

HRi = Ti

✓
⌘rRi

pK

◆ 1
1�⌘

and HFi = Ti

✓
⌘rFi

pK

◆ 1
1�⌘

All that changes in the model is that HRi, HFi are now endogenous since they depend on floorspace prices.
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Adding these equations into the system and rearranging yields
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This is of the same parametric form as the system (51). Writing the system in log changes yields
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assuming the cost of capital pK is unaffected by the system. This model admits exactly the same parametric

form of regression equations as the baseline model, and so the results of part 4 apply. Note this model allows

the share of floorspace used for commercial purposes in a census tract to respond to a change in commute costs.

This would occur if the price of commercial floorspace changed relative to that of residential floorspace, since

#̂i =
r̂1/(1�⌘)
Fi

#ir̂
1/(1�⌘)
Fi

+(1�#i)r̂
1/(1�⌘)
Ri

where #i ⌘ HFi/(HFi +HRi) is the share of floorspace allocated to commercial use in

the initial equilibrium.

Eaton and Kortum. In the Eaton and Kortum (2002) setup, there is a continuum of goods ! 2 [0, 1]. Each loca-

tion has idiosyncratic draw for each good from a Frechet distribution with location parameter Aj > 0 and shape

✓F > 1. There is perfect competition so that pj(!) = wj/zj(!). Goods market clearing implies that sales are given

by

Xj =
X

i
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j r
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This yields the same system of equations as in the baseline model, with �� 1 replaced with ✓F , and thus the results

of part 4 apply.

Capital. Consider an extension of the model in which firms can invest in capital to respond to changes in tran-

sit networks. Suppose firms use the production function Yi = AiL̃
↵L

FiH
↵H

Fi K
↵K

Fi . Capital is freely traded across the

city and available at price pK . Profit maximization implies firms spend constant fractions of sales on each factor,

with factor demands given by
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We assume Colombia is a small open economy so that the price of capital is pinned down in international capital

markets, i.e. pK is a constant exogenous to the model. Only the condition for labor demand and commercial

floorspace market clearing change. The equilibrium system is given by a system of 6 ⇥ I equations in as many

unknowns (given {�Ri,�Fi, �̃Fi}, themselves auxiliary variables of these same unknowns in the same system as

the baseline model)
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Note that with these solved for, capital demand can be recovered using the demand equation above. This is of the

same parametric form as the system (51). Writing in relative changes and taking logs yields
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The only changes from the baseline model are that the labor and housing elasticities have been relabeled, and the

change in the price of capital has entered the residual. The results of part 4 apply.

Leisure. We consider an extension of the model where consumers derive utility over goods, housing and leisure.

When preferences are Cobb-Douglas, the individual’s problem is

max
C,H,L

uiC
↵
H

�
L
�
✏ij(!) s.t. C + rRiH + wjL = wj(1� tij)
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Solving for commute flows yields

Lij =
⇣
uiw

1��
j r

��
Ri /dij

⌘✓

where dij ⌘ 1
1�tij

. This has the same parametric form as the baseline model, but with alternative exponents on

wages and house prices in the resident and labor supply terms and CMA definitions. The equilibrium can once

again be written in the parametric form as the system (51), and the results of part 4 apply.

Preference Shocks. We consider an extension of the model in which consumers have preference rather than produc-

tivity shocks over each commute. Average income becomes ȳi =
P

j ⇡j|iwj where ⇡j|i = (wj/dij)
✓ �P

s (ws/dis)
✓

is the probability of commuting to j conditional on living in i. Effective labor supply is simply LFj . The remaining

equations of the model are unchanged. The equilibrium system becomes
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Approximating ȳi around the point d�✓
ij = 0 yields ˆ̄yi ⇡ �̂1/✓

Ri , so the endogenous variables can again be expressed as

log-linear functions of CMA and structural residuals. In particular, taking changes and logs yields a system exactly

the same as the baseline model, but with the second entry in the first column of the A matrix changing from � ✓�1
✓

to �1. The equilibrium can once again be written in the parametric form as the system (51), and the results of part

4 apply.

Alternative Labor and Residential Supply Elasticities and Timing Assumptions. We consider an extension of

the model where commuters draw separate shocks over workplace and residence locations. Indirect utility across

pairs of residential and employment locations (i, j) is given by

Uij(!) =
uiwjr

��1
Ri

dij
✏j(!)⌫i(!),

where ✏j(!) is a productivity shock for employment in location j drawn from a Frechet distribution with shape ✓

and ⌫i(!) is a preference shock for living in location i drawn from a Frechet distribution with shape ⌘. Whichever

choice is made first, the supply and residents and workers to locations is given by
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where �Ri =
P

j(wj/dij)✓ as before, but now �Fj =
P

i(uir
��1
Ri )⌘d�✓

ij �
⌘

✓
�1

Ri . While these CMA terms look different

from those in the original model, substituting the resident and labor supply curves back into them yield the same
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system of equations (18)-(19) defining CMA. The remaining model equations remain log-linear in endogenous vari-

ables and �Ri and �Fi (noting that now expected income is simply ȳi = ��1/✓
Ri ). These results are independent

of whether employment or residential locations are chosen first. The equilibrium can once again be written in the

parametric form as the system (51), and the results of part 4 apply.

C.7 Reduced Form Coefficients and Residuals

This section makes explicit the structural content of the reduced form elasticities and residuals.

Residuals. As shown in the proof of Proposition 1, the residuals are given by ei = A
�1ẽi. Applying

A
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to the residual vector ẽi yields

ei =
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where each entry corresponds to the residual for the specification with LRi, rRi, rFi, L̃Fi as the outcome, respec-

tively. Residuals that vary across observations contain weighted sums of changes in (i) unobserved amenities

and residential floorspace supplies for residential outcomes and (ii) unobserved productivities and commercial

floorspace supplies for commercial outcomes.

CMA Elasticities. Computing �R = A
�1

bR and �F = A
�1

bF yields
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Rearranging these expressions yields µA = �
��1

��LF

�rF

� ↵ and µU = 1� �
��LR

�rR

as referenced in the text.

Given the reduced form estimates and the estimate of ✓ from the gravity equation, this is a system of 4 equations

in 5 parameters �, µU ,�,↵, µA. However, even if one additional parameter is calibrated, these equations cannot be

inverted for the remaining structural parameters. Consider first the system of equations determining �, µU in the

first two lines. This can be rearranged into

� =
✓

✓ � 1 + 1
�LR

(1� µU )
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� =
✓ � 1

�rR

✓ � 1
(1� µU ).

These are two straight lines in the (�, 1�µU ) space with the same intercept (at zero) but different slopes, other than

the knife edge case where ✓
✓�1+ 1

�LR

=
✓� 1

�rR

✓�1 in which case there are an infinite number of solutions. For the second

two equations, if ↵ is calibrated to an external value then the system of equations is
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These are two straight lines in the (µA,�/(� � 1)) space with the same intercept but different slopes, other than the

knife edge case where 1 +
1��rF

✓ =
�LF

(✓�1)
�LF

✓�1 in which case there are an infinite number of solutions.

Given that these equations cannot be inverted, one could try to calibrate one parameter (such as ↵) and jointly

estimate the remaining 5 (including ✓) to most closely match the CMA elasticities and the commuting semi-elasticity

in the gravity equation. However, the match will not be exact given the results above. The sufficient statistics

approach has the advantage that the researcher does not need to specify the value of all structural parameters and

can conduct analysis using the commuting semi-elasticity, the CMA elasticities (and �,� to obtain the overall level

of changes). The researcher also does not need to take a stance on the particular model generating the data, i.e.

what the specific cluster of structural parameters are that determine �R,�F .

C.8 Proofs & Additional Derivations

C.8.1 Proof of Proposition 1

Part 1: Reduced Form. Stacking the equilibrium conditions delivers
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Using the second line to substitute out for wages we arrive at a system of 4 equations in {LRi, L̃Fi, rRi, rFi}

given {�Ri, �̃Fi}
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Letting x̂ = x
0
/x denote relative changes across two equilibria, we can take logs and rearrange to get
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Premultiplying by A
�1 delivers the system

ln ˆ̃yi = �R ln �̂Ri + �F ln ˆ̃�Fi + ei

where �R = A
�1

bR, �F = A
�1

bF and ei = A
�1ẽi. Note that the last two elements of �R are zero as are the first

two elements of �F .59 Since A
�1 is block diagonal, the first two elements of ei determining residential outcomes

depend only on ˆ̄ui, ĤRi,
ˆ̄
L,

ˆ̄
U while the second two elements determining commercial outcomes depend only on
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Ai, ĤFi,

ˆ̄
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U, Ê. The exact reduced form (34) is the one which is used to conduct counterfactuals in parts 2 and 3.
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Manipulating these expressions yields µA = �
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� ↵ and µU = 1� �
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as referenced in the text.
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yields the following relationship between the two
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Substituting this in, we arrive at the following system
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or, after premultiplying by A
�1,

ln ŷi = �R ln �̂Ri + �F ln �̂Fi + �̃F ln ˆ̃�Fi + ei

This reduced form (35) along with the CMA definitions (31)-(33) hold globally to define a change in endogenous

variables {L̂Ri, r̂Ri, r̂Fi, L̂Fi, �̂Ri, �̂Fi,
ˆ̃�Fi} (and analogously the auxiliary variables ˆ̄

U, Ê defined as a function of

these variables above) given a change in exogenous (or “forcing”) variables {ˆ̄ui,
ˆ̄
Ai, ĤRi, ĤFi,

ˆ̄
L, d̂ij}. Note that in

counterfactuals, all exogenous variables other than commute costs dij will be held constant.

However, the two FCMA terms, defined in (32) and (33), are very highly correlated in the data (correlation

coefficient of 0.98). To make this regression simpler and to allow for enough residual variation to identify the coef-

ficients on each term, I take a first order approximation of �̃Fi around the point d�✓
ij = 0 which yields �̃Fj⇡�

✓�1
✓

Fj .

Substituting this in simplifies the system to
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(� � 1) ln ˆ̄
Ai +

1+↵(��1)
✓�1

⇣
ln L̂� (✓ � 1) ln ˆ̄

U

⌘
+ ln Ê
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(36)

or, after premultiplying by A
�1

,

ln ŷi = �R ln �̂Ri + �F ln �̂Fi + ei
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for yi = [LRi, rRi, rFi, LFi]. Compared with the unapproximated model, all that has happened is to approximate

ln ˆ̃�Fj⇡ ✓�1
✓ ln �̂Fj to collapse the two FCMA terms into one.

Lastly, since we will use the system (34) to conduct counterfactuals with the estimated parameters, we need to

relate the coefficients we will estimate in (36) to those in (34) . The only difference is that the last two elements of

the 4th column of A and bF have ✓ rather than ✓ � 1 in the numerator. Computing A
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bR after this adjustments

yields the same coefficient as in the unapproximated model, but the commercial variable elasticities change to
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. So the only change needed is to replace �rF with

✓
✓�1�rF in the unapproximated model equations (where �rF is the elasticity estimated in the data).

Lastly, we show that unique (to-scale) values of CMA can be recovered given dij , LRi, LFi, ✓. Equations (31)

and (32) can be written in the form
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F
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�✓
ij LRi. This satisfies the structure of the equations in theorem 1 in Allen et. al.

(2014). In the notation of that theorem, � = I and B =

"
0 �1

�1 0

#
. The spectral radius of the matrix |B��1| (where

| · | denotes the element-wise absolute value) is one. Parts (i) and (ii) of theorem 1 then imply that there exists unique

(to-scale) solution �Ri,�Fi.60

Part 2: Relative Impacts of Transit Infrastructure. We now show we can use this system of equations to com-

pute changes in economic activity relative to the citywide average in response to a transit shock using estimates of

✓ and the reduced form elasticities �LR
,�rR ,�rF ,�LF

, in addition to data on the initial equilibrium dij , LRi, LFi and

the change in transit infrastructure d̂ij . Assuming unobservables are constant across equilibria, exponentiating the

(unapproximated) system (34) and letting A
�1
ij denote the ij-th entry of A�1 yields
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where �̂Ri, �̂Fi,
ˆ̃�Fi,

ˆ̃
LFi are given by

�̂Ri =
⇣
ˆ̄
L
ˆ̄
U

�✓
⌘�1X

j

⇡
R
ij d̂

�✓
ij
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60Once these are recovered, a unique to-scale solution for �̃Fi is simply recovered from (33).

38



�̂Fj =
⇣
ˆ̄
L
ˆ̄
U

�✓
⌘�1X

i

⇡
F
ij d̂

�✓
ij

L̂Ri

�̂Ri

(42)

ˆ̃�Fj =
⇣
ˆ̄
L
ˆ̄
U

�✓
⌘� ✓�1

✓
X

i

⇡̃
F
ij d̂

�(✓�1)
ij

 
L̂Ri

�̂Ri

!(✓�1)/✓

(43)

L̂Fj =
⇣
ˆ̃
LFj

� ˆ̃�Fj

⌘ ✓

✓�1

�̂Fj . (44)

Note that we are using that �F and �R have zeros in the first and last two entries respectively, otherwise both CMA

terms would appear in each line. Here ⇡R
ij =

d�✓

ij

LFj

�Fj

P
j
d�✓

ij

LFj

�Fj

, ⇡F
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✓

. Since these

shares are homogenous of degree zero in�Ri,�Fi, their unique values are identified using values for dij , LRi, LFi, ✓

(since these determine unique to-scale solutions for the CMA terms). In my particular model, computing the terms

in the A
�1 matrix yields the system

L̂Ri = �̂
�LR

Ri
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L
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The change in constants are given by
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Ê =
X

i

⇡
E
i �̂

1/✓
Ri L̂

✓�1
✓

Ri (50)
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are residential and expenditure shares from the initial equilibrium,

where the expression for ˆ̄
U comes from summing up (45).

Now define ˆ̂yi = ŷi

�
(
Q

i ŷi)
1/I as the double-differenced change in yi between two periods relative to the

geometric average change across the whole city. Then this system becomes
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.

To solve this system, one can begin by solving for �Ri,�Fi using {✓, dij , LRi, LFi} following the procedure outlined

above. With these in hand, ⇡R
ij ,⇡

F
ij , ⇡̃

F
ij can be computed. Then, a change in the transit network d̂ can be fed into the

system above which constitutes a system of 8N equations in as many unknowns { ˆ̂LRi,
ˆ̂
LFi,

ˆ̃̂
LFi,

ˆ̂rRi,
ˆ̂rFi,

ˆ̂�Ri,
ˆ̂�Fi,

ˆ̃̂
�Fi}

given data {LFj , LRi, dij} and parameters (✓,�LR
,�rR ,�rF ,�LF

). Any model with a gravity equation for commut-

ing with commute costs dij , commuting elasticity ✓, and the reduced form ln ŷi = �R ln �̂Ri + �F ln �̂Fi + ei will

deliver the same distribution of relative changes to the shock across the city.

Part 3: Level Impact of Transit Infrastructure. Solving for the level effect of a counterfactual change in transit

infrastructure requires solving for (i) the scale of each relative change variable from part 2 and (ii) the three en-

dogenous scalars ˆ̄
U,

ˆ̄
L, Ê until the system of equations (41)-(50) holds. This is a system of 8N + 2 equations in as

many unknowns, if the value of either ˆ̄
Uor ˆ̄

L is known. This last condition is realized by alternative assumptions

on population mobility. In the closed city case, city population is fixed so that ˆ̄
L = 1. In the case with migration

into the city, two equations in ˆ̄
Uor ˆ̄

L are provided in Appendix E.1. The additional data requirements to solve this

system are the shares ⇡LR

i and ⇡E
i (which can be solved using {LFj , LRi, dij , ✓}. The additional parameters required

are �,� as can be seen from the exponents on the scalars in (45)-(48).

Part 4: Isomorphisms. Consider a model where the supply of commuters is determined by a gravity equation

Lij = c�j�iij . Then the supply of residents and labor are given by LRi = �i�Ri and LFi = �i�Fi where

�Ri = c

X

j

LFj

�Fj
ij

�Fi = c

X

j

LRi

�Ri
ji

Following the results in part 1, this solution has a unique to-scale solution.

Now suppose that in addition to these two equations pinning down CMA, the equilibrium can be written as a

system of K equations in K endogenous variables {y1i, . . . , yki}Ii=1 of the form

KY

k=1

y
↵kh

ki = �h�
bR
h

Ri�
bF
h

Fieih for h = 1, . . . ,K (51)

Then this system can be written of the form
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ln ŷ1i
...

ln ŷKi
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, A ln ŷi = b
R ln �̂Ri + b

F ln �̂Fi + ln ˆ̃ei

, ln ŷi = �R ln �̂Ri + �F ln �̂Fi +A
�1 ln ˆ̃ei

Exponentiating the system and assuming unobservables are constant across equilibria yields61
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for h = 1, . . . ,K

Relative changes across the city are given by
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P
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ji
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can be

solved using the to-scale versions of the CMA terms. Taken together, this is K+2 equations in the K+2 unknowns

{ˆ̂yih}Kh=1,
ˆ̂�Ri,

ˆ̂�Fi. Thus we have shown that parts (i) and (ii) apply to any model of this class. Appendix C.6

provides explicit examples of models that fall under it. ⌅

C.8.2 Proof of Proposition 2

This proof considers a slight modification of the baseline model, in which individuals (i) have separate productivity

shocks over workplace locations and preference shocks over residential locations, (ii) own an equal share of the

housing stock and (iii) face a labor income tax of tij = 1/(1 + ✓).

The reason for these changes is that efficiency requires lump sum redistribution to workers (i.e. part of income

that does not depend on workplace location). In the decentralized equilibrium of the model in Section C.1, income

always depends on workplace location. Even if total income is yj = wj + e for some lump sum transfer e and

productivity shocks are over pairs ij, then total income is yj/dij ⇥E [✏ij |Choose ij]. Since this average productivity

term depends on the choice of workplace location, there is no longer a location-independent portion of income.

Despite the slight difference between the model used in this proof and the baseline model, simulations that feed

61Note that
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where ⇡
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j
ij
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�Fj
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ij =
ji
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�Rj

P
j
ji

LRj

�Rj

can be solved using the to-scale versions of the CMA terms. So unique to-scale values

for the changes in CMA terms are pinned down given values L̂Ri, L̂Fi, yielding the full system of equations that characterizes
the equilibrium. Uniqueness (to-scale) of this solution in changes follows the same argument as for the solution in levels, given
they have the same functional form.
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in a very small shock (a constant d ln dij = 0.00001 8ij) into an efficient version of the baseline model (i.e. where

µU = µA = 0) confirmed the expression for the welfare elasticity derived in the proof holds in the baseline model

too.

Equilibrium Equations. The equilibrium equations in this model are
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where Y =
P

i Yi is aggregate expenditure, ↵̃ ⌘ ↵
�↵(1�↵)�(1�↵) is a constant, and (1�↵�)Y = (1��)Y +�(1�↵)Y

is total expenditure on residential and commercial floorspace. Note that the preference draw ⌫i(!) and productivity

draw ✏j(!) are both drawn from a Frechet distribution with unit scale and shape ✓ > 1, and workers choose their

residential location before deciding where to work.

Planner Problem. The planner knows the distribution of individual heterogeneity, but not their specific draws.

She announces a policy where workers receive some amount of the consumption and housing good per unit of

effective labor supply based on where they work, as well as an amount based on where they live. In particular, the

policy for someone who chooses to live in i and work in j with productivity ✏ is

cij(✏) = c̃ij
✏

dij
+ c̄i

hij(✏) = h̃ij
✏

dij
+ h̄i.

Given these policies, individuals make free decisions about where to live and work. Utility from each choice is
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Uij(✏, ⌫) = ui

⇣
c̃ij
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⌫. Since this is non-linear in ✏, I constrain the planner to policies that

make the two transfers proportional to one another (with a constant of proportionality that can vary by residential

location), i.e. h̃ij = ◆ic̃ij and c̄i = ◆ih̄i. Then Uij(✏, ⌫) = ui◆
1��
i cij(✏)⌫.

The planner then chooses the consumption policies and supply of residents and workers to maximize utility

subject to the following technological constraints
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The first order conditions with respect to the choice variables {Ū , c̃ij , ◆i, c̄i, ckij , Lij , LRi, L̃Fi, H̃Fi, ✏̄ij ,�Ri} are
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and each of the constraint holds (to provide a condition for each multiplier).

Consumption and Housing. Define x̃ij = vc̃ij + ih̃ij = c̃ij (v + i◆i) to be expenditure per unit of effective labor

(as shown below, vij = v 8ij). Likewise define x̄i = c̄i (v + i◆i) to be the expenditure on the fixed good so that

c̄i = x̄i/ (v + i◆i). Putting these into the mobility condition yield
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To solve this, we need a value for ⇢i. From the FOC for c̄i,
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.

The definition of ✏̄ij yields x̃ij ✏̄ij = �̃1/✓
Ri so that average income is constant across workplace locations within a

residence location. Using this to simplify the denominator in the FOC for ◆i, combining these two conditions gives
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v + i◆i = v/�. Substituting this into c̃ij = x̃ij/ (v + i◆i), c̄i = x̄i/ (v + i◆i), h̃ij = ◆ic̃ij and h̄i = ◆ic̄i yields

c̃ij = �x̃ij/v

h̃ij = (1� �)x̃ij/i
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Plugging this into the expression for utility gives residential supply
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Residential Floorspace. Using these results, the floorspace market clearing condition implies
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Labor Supply. Finally we need to solve the spatial mobility condition, i.e. the FOC for Lij . First, note the

condition for LRi implies  ij =  i. The FOC for LRi and Lij can then be combined to get

⇠j ✏̄ij = x̃ij ✏̄ij + x̄i +
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✓

⇢iŪ

LRi
+ µ.

Substituting in the value for ⇢i from above gives

x̃ij ✏̄ij + x̄i =
✓

✓ + 1
⇠j ✏̄ij �

✓

✓ + 1
µ.
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Note this implies that expenditure per effective unit of labor depends only on workplace location (x̃ij = ✓
✓+1⇠j),

and expenditure per worker is constant across residential locations (x̄i = � ✓
✓+1µ). Substituting the expression for

c̃ij into the commuting constraint gives

Lij = LRi
(⇠j/dij)

✓

P
s (⇠s/dis)

✓
.

Taking Stock. The solution to the planner’s problem is the vector (Ū ,i, v, ⇠i, �i,�i, Lij , LRi) that satisfies

LRi / L̄

 
uiȳi

��1
i

Ūdij

!✓

Lij = LRi
(⇠j/dij)

✓

P
s (⇠s/dis)

✓

L̃Fj =
X

i

Lij ✏̄ij

⇠iL̃i = ↵�
1��
i v

��1
�Y

�i = ↵̃
⇠
↵
i �

1�↵
i

Ai
.

HRi = (1� �)
LRiȳi

i

�iHFi = (1� ↵)�1��
i v

��1
�Y

Ū /
"
X

i

⇣
uiȳi

��1
i

⌘✓
#1/✓

ȳi = �
1/✓
Ri � ✓

✓ + 1
µ

�Ri =
X

j

✓
✓

✓ + 1
⇠j/dij

◆✓

where ȳi = �1/✓
Ri � ✓

✓+1µ and �Ri =
P

j

⇣
✓

✓+1⇠j/dij

⌘✓
are functions of these variables and the planner’s multiplier

on the residential feasibility constraint µ. This is the same set of equations as the decentralized equilibrium with

(i, v, ⇠i, �i,�i, x̃ij , µ) = (rRi, P, wi, rFi, pi,
✓

1+✓wj ,� ✓
1+✓ e), i.e. when tij = 1/(1 + ✓). Therefore under this condition,

any competitive equilibrium also solves the social planner’s solution and is efficient.

Welfare Elasticity. Using the envelope theorem, the change in welfare to a change in commute costs is

@Ū

@dij
= �✓ ijLij

dij
� ✓

⌧i�Ri

dij

Lij

LRi

) @ ln Ū

@ ln dij
= �

Lij

⇣
✓ ij + ✓

⌧i�Ri

LRi

⌘

Ū

Combining the FOC for c̃ij and ✏̄ij give ⇠j ✏̄ij = ✓ ij + ✓⌧i
�Ri

LRi

. Defining wij ⌘ ⇠j ✏̄ij to be average labor income for

commuters along ij, this simplifies to
@ ln Ū

@ ln dij
= �wijLij

Ū
.
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Substituting the expression for ⇢i into the FOC for Ū implies Ū =
P

i LRiȳi. From the adding up condition we must

have
X

ij

Lij ȳi

| {z }
Total Income

=
X

ij

Lijwij

| {z }
Labor Income

+ (1� �)
X

ij

Lij ȳi

| {z }
Income from Res Floorspace

+ �(1� ↵)
X

ij

Lij ȳi

| {z }
Income from Comm Floorspace

=
1

↵�

X

ij

Lijwij

Thus Ū = 1
↵�

P
ij Lijwij and

@ ln Ū

@ ln dij
= �↵� wijLijP

rs wrsLrs
.

Adding up to compute the change in utility d ln Ū to a vector of changes in commute costs {d ln dij}ij gives the

result in the proposition. Note that the parameters ↵,� account for the fact that some of the gains go to factors other

than labor, but these equilibrium price effects do not matter to an infinitesimal change in commute costs and thus

do not impact welfare. ⌅

C.8.3 Proof of Proposition 3

Part 1: Wages

To construct the system of equations used for solving for wages, I collect the expressions for supply and demand

for workers. Labor supply LFjg = w
✓g
jg�Fjg can be rearranged as

wjg = L

1
✓g

Fjg

2

4
X

i,a

LRiag
P

k w
✓g
kgd

�✓g
ika

d
�✓g
ija

3

5
� 1

✓g

This is a system of equations in wjg given parameters and data {LRiag, dija, LFjg}. The problem is that I do not

observe employment by group, but only employment by industry LFjs. However, I can combine this data with the

structure of the model to find employment by group for each location.

From CES demand for each group’s labor, the share of any industry’s (effective) employment by any group g is

given by
L̃Fjgs

L̃Fjs

=
(wjg/↵sg)��

P
h(wjh/↵sh)��

.

Summing this over industries yields total employment by group in a location

L̃Fjg =
X

s

(wjg/↵sg)��

P
h(wjh/↵sh)��

L̃Fjs

It remains to express effective units of labor supply in terms of observed data and wages.

Start by decomposing L̃Fjs in terms of data and wages as follows. First, compute the average productivity of

workers in j

✏̄jg = E [✏|g,Choose j] =
X

i,o

E [✏|g,Choose j from(i, o)] Pr (i, o|j, g) =
X

i,o

�g

 
T̃g

⇡j|iog

! 1
✓g 1

dijo
Pr (i, o|j, g)
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Next, break down the probability as

Pr (i, o|j, g) = ⇡io|jg =
⇡j|iog⇡iogP
r,u ⇡j|rug⇡rug

=
⇡j|iogLRiogP
r,u ⇡j|rugLRrug

So

✏̄jg = Tg

X

i,o

⇡
� 1

✓g

j|iog
1

dijo

⇡j|iogLRiogP
r,u ⇡j|rugLRrug

Next, note that

✏̄js =
X

g

✏̄jg⇡g|js =
X

g

✏̄jg
LFjgs

LFjs
=
X

g

✏̄jg
(wjg/↵sg)��

/✏̄jgP
h(wjh/↵sh)��/✏̄jh

Putting these results together, we have that

LFjg =
L̃Fjg

✏̄jg
=
X

s

(wjg/↵sg)��

P
h(wjh/↵sh)��

✏̄js

✏̄jg
LFjs

Substituting this result back into the expression for labor supply, we find that wages are the fixed point of the system

wg = Fwg(wg;LRg, LFs) where the operator Fwg is defined to have the j-th element

Fwg(wg;LFs, LRg)j =

"
X

s

(wjg/↵sg)��

P
h(wjh/↵sh)��

✏̄js

✏̄jg
LFjs

# 1
✓g

2

4
X

i,o

LRiog
P

k w
✓g
kgd

�✓g
iko

d
�✓g
ijo

3

5
� 1

✓g

= F1wg(wg;LFs, LRg)jF2wg(wg;LRg)j

where ✏̄jg = Tg

X

i,o

⇡
� 1

✓g

j|iog
1

dijo

⇡j|iogLRiogP
r,u ⇡j|rugLRrug

✏̄js =
X

g

✏̄jg
(wjg/↵sg)��

/✏̄jgP
h(wjh/↵sh)��/✏̄jh

Note that the operator Fwg has the following properties:

• Monotonicity. Transform the system into log-space. From Euler’s theorem since F1 is homogenous of degree

zero we know for any vector d lnw we have that

X

k,h

@F1g

@ lnwkh
= 0

so the total differential of F1g to a vector of wage changes is zero. The second term is monotonic in w, which

is a positive transformation of lnw. Thus, the operator Fwg is a strictly increasing function of lnw. By the

chain rule, Fwg is a strictly increasing function of w.

• Homogeneity. Consider first F1wg . The first part (wjg/↵sg)
��

P
h
(wjh/↵sh)�� is homogenous of degree zero in wages.

From the definition of ✏̄js and ✏̄jg we see that these too are homogenous of degree zero in wages. Therefore

F1wg is homogenous of degree zero in wages. Next, we see that F2wg is homogenous of degree one in wages,

so that Fwg is homogenous of degree one.
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Therefore, by the results in Fujimoto and Krause (1985) there exists a unique (to-scale) solution to the system wg =

Fwg(wg;LFs, LRg).

Part 2: Remaining Unobservables

Given wages, �Riag,Wis can be computed. The total wage bill is obtained from

WjsNjs =
X

g

wjgL̃Fjgs

=
X

g

wjg
(wjg/↵sg)��

P
h(wjh/↵sh)��

LFjs✏̄js

This allow me to obtain sales from ↵sXjs = WjsNjs. With this in hand, productivity comes from

Xjs =

 
W

↵s

js r
1�↵s

Fj

Ajs

!1�&

X

since X is also observed using �Riag .

Lump sum income from the housing stock is recovered directly from ⇡ = L̄
�1

P
i(rRiHRi+ rFiHFi). Amenities

are retrieved from the resident supply condition

LRiag = �Lg

⇣
uiag(Tg�

1/✓
Riag � h̄rRi � paa+ ⇡)r��1

Ri

⌘⌘g

) uiag =
(LRiag/�Lg)1/⌘gr

1��
Ri

(Tg�
1/✓
Riag � h̄rRi � paa+ ⇡)

To solve for unobservables on the housing side of the model, I need to introduce a new pair of location char-

acteristics omitted in the main paper for notational brevity. In particular, the floorspace market clearing condition

rRi =
Ei

HRi

will not necessarily hold at the values for data and estimated wages (where Ei is total expenditure on

housing from residents of i). I therefore introduce an additional unobservable so that HRi = H̃Ri⇠Ri, where H̃Ri

are physical units of floorspace and ⇠Ri are effective units (or housing quality). These unobservables can be solved

for from the housing market clearing condition ⇠Ri = Ei

H̃RirRi

. Similar residuals for effective units of commercial

floorspace ⇠Fi are obtained from the commercial floorspace market clearing condition ⇠Fi =
P

s
(1�↵s)Xis

H̃FirFi

, and total

floorspace supplies are given by HRi = H̃Ri⇠Ri and HFi = H̃Fi⇠Fi.

Finally, it remains to solve for the land use restrictions ⌧i. These can be identified from

(1� ⌧i) =
rRi⇠Ri

rFi⇠Fi

for locations with mixed land use. For locations with single land use, the wedges are not identified but these are

rationalized by zero productivities (for all sectors) or zero amenities (for all worker groups) and thus will remain

single use across counterfactuals.62 ⌅
62These solutions are unique to scale. In practice, as discussed in Section D.3, I normalize the geometric mean of wages and

floorspace prices to one. This affects the scale of unobservables such as productivities and amenities, but has no impact on
relative differences in exogenous characteristics or endogenous variables across locations or counterfactuals.
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C.8.4 Average Income in Single Group Model

Floorspace Market Clearing and Average Income. Average income of residents of i is

ȳi =
X

j

⇡j|i(wj/dij)E [✏ij(!)|! chooses (i, j)] =
1

⇡i

X

j

⇡

✓�1
✓

ij (wj/dij) =
1

⇡i
Ū

�(✓�1)
⇣
uir

��1
Ri

⌘✓�1X

j

(wj/dij)
✓

= L̄Ū
�(✓�1)

⇣
uir

��1
Ri

⌘✓�1
�Ri

LRi

= Ū
1

uir
��1
Ri

= Ū
1

�
LRi/�RiL̄Ū

�✓
� 1

✓

= �1/✓
Ri L

�1/✓
Ri .

Total expenditure by residents in i is then simply Ei = ȳiLRi = �1/✓
Ri L

✓�1
✓

Ri , the expression in the floorspace market

clearing condition.

C.9 Bootstrap

To incorporate uncertainty from the parameter estimates into the welfare estimates, I bootstrap the quantification

procedure 200 times.

For the single group sufficient statistics model, I draw values for the 10 estimated parameters (, bBus, bCar, bTM ,�, ✓,�LR
,�rR ,�rF ,�LF

)

from normal distributions with means equal to the point estimates and standard deviations equal to the standard

error of the estimates. I consider only draws which have non-negative commuting elasticities and reduced form

elasticities otherwise the model has issues converging. This represents 95% of all drawn parameter vectors. I also

disregard a small number of draws with an implausibly large value for the agglomeration elasticity (µA > 1) since

this can lead to non-sensical negative welfare estimates.63 I then compute confidence intervals across the 200 boot-

strap estimates. In Table 6 the estimated parameters are used for welfare estimates in the first two columns so con-

fidence intervals are reported, and the non-parametric p-value for whether the fraction of welfare gains accounted

for by VTTS is less than one is simply the fraction of the 200 draws for which this is not true.

For the multigroup model I repeat the same procedure for the 10 estimated parameters (, bBus, bCar, bTM ,�, ✓g, ⌘g, µA, µ
g
U )

D Additional Model Results

D.1 Model Inversion

The model contains unobserved location characteristics, such as wages, productivities, amenities and land use

wedges. While the presence of agglomeration forces allows for the possibility of multiple equilibria, I am able

to recover unique values of composite productivities and amenities that rationalize the observed data as a model

equilibrium.

There is a key difference in this process compared to recent quantitative urban models (e.g. Ahlfeldt et. al. 2015).

In those models, there is one group of workers. It is straightforward to combine data on residence and employment

63Including these simulations widens the 90% and 95% confidence intervals to (-0.027,8.481) and [-1.035,10.754] respectively.
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with the model structure provided by the gravity equation in commuting to solve for the unique vector of wages

that rationalize the data. To replicate this in a model with multiple skill groups requires data on residence and

employment by skill group. While the former are typically available in censuses, I am unaware of datasets that

provide employment by skill group across small spatial units within cities. This is where the model’s multiple

industries become useful. The data contain employment by industry. Intuitively, given the differential demand for

skills across industries, the relative employment by industries in a location should be informative about the relative

employment across skill groups. The following proposition formalizes this intuition, and shows that a unique vector

of group-specific wages can be recovered using data on residence by skill and employment by industry. Obtaining

the remaining unobservables is straightforward.

Proposition 3. (i) Wages Given data on residence by skill group LRig , employment by industries LFjs, commute costs dija
and car ownership shares �a|ig in addition to model parameters, there exists a unique vector of wages (to scale) that rationalizes

the observed data as an equilibrium of the model.

(ii) Remaining Unobservables Given model parameters, wages and data {LRig,⇡a|iag, LFjs, Hi,#i, rRi, rFi} there

exists a unique vector of unobservables {uiag, Ajs, Xjs, ⌧i,⇡} (to scale) that rationalizes the observed data as an equilibrium

of the model.

The procedure to estimate the parameters of the model proceeds in four steps. First, a subset of parameters are

calibrated and estimated without solving the full model. Second, wages are recovered using parameters from the

first step. Third, the remaining elasticities are estimated via GMM using moments similar to those in the reduced

form analysis. Fourth, with all parameters in hand the model is inverted to recover the remaining unobservables.

D.2 Calibrating ↵sg

Under the CES aggregator for labor, the relative wage bill paid by firms to high-skill workers in location j and sector

s defined as �jsH ⌘ wjH L̃FjHs

�
wjLL̃FjLs is

�jsH =

✓
wjH

wjL

◆1�� ✓
↵sH

↵sL

◆�

.

Taking a double difference of this ratio in sector s relative to a reference sector s0 gives

�jsH/�js0H =

✓
↵sH

↵sL

◆�
,✓

↵s0H

↵s0L

◆�

which holds for all workplace locations j. Using that ↵sL = 1� ↵sH yields

↵sH =

↵
s0H

1�↵
s0H

E [�jsH/�js0H ]1/�

1 + ↵
s0H

1�↵
s0H

E [�jsH/�js0H ]1/�
,

where E [�jsH/�js0H ] are observed at the city-level in the ECH data. This allows identification of ↵sH to scale

(relative to the value of ↵s0H in the reference sector). Using the manufacturing sector as the reference sector s0 = M ,

I pin down ↵MH with a departure from the spatial aspect of the model and use that under the CES aggregator the
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share of the wage bill paid to high-types is

Share of Wage Bill to HM =
w

1��
H ↵

�
MH

w
1��
H ↵

�
MH + w

1��
L (1� ↵MH)�

.

Plugging in the left hand side (observed at the city-level in the ECH data) along with the average wages wH , wL

observed in the manufacturing sector in that data allows me to recover a value for ↵MH .

The results are shown in Table A.9. The first column shows ↵Hs while the second shows the relative wage bill of

high-skill workers. We see a sensible and monotonic relationship, where industries such as Education and Financial

Services have the highest weight on high-types and Domestic Services and Hotels & Restaurants have the lowest.

D.3 Model Solution

Calibrating TH , h̄, pa Given the parameter estimates in the previous section, for any value of Tg it is possible to

solve for the full distribution of wages across the city. Since the vector Tg is not identified to scale, I normalize

TL = 1 and calibrate TH so that the aggregate wage skill premium in the model matches that observed in the data.

This involves jointly solving the system of equations for {TH , wjg}

dWP =
TH

P
ia �

1/✓H
RiaH�iaHP

ia �
1/✓L
RiaL�iaL

wg = Fg(wg;LFs, LRg, TH)

where dWP = 1.713 is the wage premium observed in the data, the term next to it is the wage premium as predicted

by the model (where �iag is the share of type-g workers in cell (i, a)), and the operator Fg is the system of equations

used to solve for wages as a function of observables as given in Section C.8.3.

Next, having solved for wages the parameters h̄, pa are set to exactly match the average expenditure share on

housing and cars. In particular, they solve

1� � + h̄

X

i,a,g

rRiLRiag

Eiag
�iag = !̂H

X

i,g

�
C
ig

paP

Tg�
1/✓g
Riag

= !̂C

where P is the aggregate price index,64
!̂H = 0.3075 and !̂C = 0.1513 are the aggregate expenditure shares on

housing and cars respectively from the GEIH, and �iag and �Cig are the share of all individuals in cell (i, a, g) and the

share of car owners in call (i, g) respectively.

I solve for these parameters to exactly match the observed data in each period. For example, for the post period

I obtain TH = 2.016, h̄ = 1.2097 and pa = 117.37 (with 7).

Algorithm for Solving the Model The system of equations to be solved are provided in the proof of proposition 1.

In this section, I outline the iterative algorithm used to solve for the equilibrium of the model

1. Guess a vector w0
,#

0,r0, u0
, A

0

64This can be computed given calibrated wages and productivities, as well as observed commercial floorspace prices.
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2. Given a wage vector wt
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t
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t
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t
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t
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(e) Update the main variables
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t
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t)LRiag is aggregate expenditure on goods, Y t
i =

P
s(p

t
is)

1��(AjsP
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X
t is firm sales in i and E

t
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i h̄L
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P
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Riag)
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Riag is expenditure on housing.

3. ||(w̃, #̃, r̃, ũ, Ã)�(wt
,#

t
, r

t
, u

t
, A

t)||1 < ✏tol then stop. Otherwise, set (wt+1
,#

t+1
, r

t+1
, u

t+1
, A

t+1) = ⇣(wt
,#

t
, r

t
, u

t
, A

t)+

(1� ⇣)(w̃, #̃, r̃, ũ, Ã) for some ⇣ 2 (0, 1) and return to step 2.

Since the equilibrium system is only defined to scale (it is homogenous of degree zero), I normalize the geometric

mean of wages to one. In order to keep the scale of different variables on the same order of magnitude, I also

normalize the geometric mean of floorspace prices to one prior to solving for the model’s unobservables. This

affects the scale of unobservables such as productivities and amenities, but has no impact on relative differences in

exogenous characteristics or endogenous variables across locations or counterfactuals.

D.4 Benchmarking the Amenity Spillovers

The estimated amenity spillovers can be benchmarked to Diamond (2016) who estimates a spillover of the form

uig = ūig(LHi/LLi)µU,g finds on average µU ⇡ 2.62. To a first order, in this paper ukig ⇡ ūikg(LHi/LLi)µU,g(1�⇡H)

where ⇡H is the share of high-skill workers. Using ⇡H = 0.3 from 2005 (the midpoint of the period in question), the

average estimate of 0.818 gives E [µU,g] (1� ⇡H) = 0.572, about one quarter of Diamond (2016).
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E Model Extensions

E.1 Migration

The baseline model considers a closed city with a fixed population. This section relaxes this to allow for migration

into the city from the rest of the country.

We assume that workers in Colombia face a choice to live in Bogotá or the rest of the country. Workers make

their migration choice based on expected utility in the destination; their expected utility is Ū in Bogotá and Ū
Rest in

the rest of the country. This latter term is an exogenous model parameter. Letting individuals have a multiplicative

preference ⌘(!) for each choice distributed Frechet with shape parameter ⇢ > 0, the number of workers choosing to

live in Bogotá is

L̄ = L̄
Col

✓
Ū

ŪRest

◆⇢

,

where L̄
Col is the (exogenous) population of the entire country. In changes this yields

ˆ̄
L =

ˆ̄
U

⇢

⇡Bog ˆ̄U⇢ + ⇡Rest
,

where we have assumed that ˆ̄
Urest = 1 (i.e. average utility in the rest of Colombia is unaffected by TransMilenio),

and ⇡Bog
,⇡

Rest denote the share of Colombians living in Bogotá and the rest of Colombia respectively in the initial

period. The remaining equations of the model are unchanged, this simply turns ˆ̄
L from a model parameter into an

endogenous variable.

The change in welfare of Bogotanos is now now \
E
⇥
Ū⌘(!)|! chose Bogotá

⇤
=
h
⇡
Bog ˆ̄

U
⇢ + ⇡

Rest
i1/⇢

.

E.2 Congestion

Overview. This section develops an extension of the model that incorporates congestion. While the same system

of equations will determine the equilibrium of economic activity in the city given a matrix of commute times, a

separate system of equations will be added that determines commute times as a function of economic activity

(through the number of commuters). These will then be solved jointly to quantify the response of the equilibrium

to a change in infrastructure allowing for congestion.

The extension blends elements from Allen and Arkolakis (2021) and Gaduh et. al. (2022). Commuters travel

along a network where census tracts are nodes and adjacent census tracts (in the network sense) are connected by

edges. They choose a route between an origin and destination and for each edge in that route they pick a mode.

This extension inherits elements from the nested logit model in the paper. If an individual travels using the public

nest, they can choose between any mode in that nest (walking, bus, TransMilenio) for each node. However if they

travel by the private nest (i.e. car), they travel by car along each edge. Individuals have route-specific Frechet

shocks, yielding convenient expressions for dij as the expected cost over all the routes they might take between i

and j. Travel time on roads by car is subject to within-mode congestion through a power function of the volume of

car travel along that edge.

Congestion is incorporated by building off the working paper version of Allen and Arkolakis (2021).65 Unlike

the published version, I allow the elasticity with which commuters choose origin-destination pairs to differ from

65This version is Allen and Arkolakis (2019).
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the elasticity with which they choose the particular route to get there. This choice is made for two reasons. First, it is

restrictive to require commuters have the same heterogeneity in idiosyncratic preferences across pairs of neighbor-

hoods to live and work as they do across potential routes to get between home and work. For example, commuters

may by and large choose the fastest route between home and work (low dispersion in preferences over routes) but

tend to choose quite different home and work locations all else equal (high dispersion in preferences over live-work

pairs). Second, this choice keeps the economic and traffic modules of the model separate. In so doing, the reduced

form elasticities �R,�F from the baseline model continue to determine the response of economic activity to changes

in travel times. The difference is that now, the change in travel times with respect to changes in infrastructure will

depend on commuting choices through congestion. The extension borrows the idea from Gaduh et. al. (2022) to

incorporate multiple travel modes by allowing commuters to choose routes between origins and destinations across

alternative link-mode combinations, but allows for differential substitution patterns across modes when using pub-

lic transit as opposed to driving.

Traffic Module. To construct a tractable way of incorporating congestion, I model the routing choice of commuters

using the discrete choice framework from Allen and Arkolakis (2021). Between each pair of locations is an infras-

tructure matrix T(m) = [tkl(m)] for mode m 2 {Walk,Bus,TransMilenio,Car}, where tkl(m) � 0 is the minutes of

travel between location k and l on mode m. If no direct link exists between k and l on the network of mode m, I set

tkl(m) = 1. I also set tkk(m) = 1 to exclude self-loops.

The disutility of travel over link kl using mode m is simply exp
⇣
tkl(m) + b̃(m)

⌘
, where b̃(m) is an amenity

associated with each mode as in the baseline model. I assume these costs are multiplicative, so that if a commuter

chooses a route r = {i = r0, r1, . . . , rK = j) of length K between i and j, the total cost is exp
⇣
tijr + b̃r

⌘
where

tijr =
PK

k=1 trk�1,rk(mrk�1,rk) and b̃r =
PK

k=1 b̃(mrk�1,rk). Note here that mrk�1,rk is the mode chosen on link

rk�1, rk of the route. Lastly, I allow commuters to have an idiosyncratic multiplicative preference for a particular

route exp (⌫r(!)), where ⌫r(!) is distributed T1EV for minima with shape parameter � > 0. Under the same

structure of preferences from the baseline model, indirect utility from choice (i, j, r) is

Uijr(!) =
uiwjr

��1
Ri

exp
⇣
tijr + b̃r + ⌫r(!)

⌘✏ij(!).

Assuming that workers first choose where to live and work and then choose which route to commute with and

solving this via backward induction, the route choice problem is simply

min
r2PK ,K�0

n
exp

⇣
tijr + b̃r + ⌫r(!)

⌘o
.

Workers become car owners with probability ⇢Car. If they do not own a car, they choose between public modes

only. Properties of the T1EV distribution imply that

E

"
min

r2PPub

K
,K�0

{exp (tijr + ⌫r(!))}
#
= exp (�t̄ij)

where t̄ijPub = � 1

�
ln

1X

K=0

X

r2PPub

K

exp

 
��

KX

k=1

h
trk�1,rk(mrk�1,rk) + b̃(mrk�1,rk)

i!
,
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where P
Pub
K are all paths of length K using the public transit network consisting of m 2 {Walk,Bus,TransMilenio}.

If a worker does own a car, they can also choose to to travel using the car alone with

t̄ijCar = � 1

�
ln

1X

K=0

X

r2PCar

K

exp

 
��

KX

k=1

h
trk�1,rk(mrk�1,rk) + b̃(mrk�1,rk)

i!
,

where P
Car
K are all paths of length K using the car network. If a worker owns a car, they decide whether or not

to use it to commute and solve max {t̄ijPub + ✏Pub, t̄ijCar + ✏Car}. Assuming the idiosyncratic preference draws

✏Pub, ✏Car are drawn iid from a T1EV distribution, the probability of choosing to travel using the car conditional on

owning a car is

PijCar|Car =
exp (�t̄ijCar)

exp (�t̄ijCar) + exp (�t̄ijPub)
.

Note that overall expected utility is

Ea

h
max
m

�
Uijm|a(!)

 i
= uiwjr

��1
Ri ✏ij(!)⇥

"
⇢car

 
E

"
min

r2PPub

K
,K�0

{exp (tijr + ⌫r(!))}+ ✏Pub, min
r2PCar

K
,K�0

{exp (tijr + ⌫r(!))}+ ✏Car

#!
+ (1� ⇢car)E


min

r2PK ,K�0
{exp (tijr + ⌫r(!))}

�#

= uiwjr
��1
Ri ✏ij(!)⇥

⇥
⇢car

�
Emax

�
exp

�
t̄ijPub + ✏

Pub
�
, exp

�
t̄ijCar + ✏

Car
� �

+ (1� ⇢car) exp (t̄ijCar)
⇤

= uiwjr
��1
Ri ✏ij(!)⇥ [⇢car (exp (t̄ijOwnCar)) + (1� ⇢car) exp (t̄ijPub)]

where

t̄ijOwnCar ⌘ � 1


ln [exp (�t̄ijPub) + exp (�t̄ijCar)] .

So altogether

Ea

h
max
m

�
Uijm|a(!)

 i
=

uiwjr
��1
Ri ✏ij(!)

exp (t̄ij)

where t̄ij = � 1


ln [⇢Car exp (�t̄ijOwnCar) + (1� ⇢car) exp (�t̄ijPub)] .

This therefore is nested within the simple model of Appendix C.1, with a different formulation of commute costs

dij .

Define A(m) ⌘

akl(m) ⌘ exp

⇣
tkl(m) + b̃(m)

⌘��
�

. As in Gaduh et. al. (2022), one can show via induction for

the public transit network that

exp (t̄ij)
�� =

1X

K=0

AK
ijPub

where APub =
X

m2BPub

A(m)

where AK
ijPub is the ij element of the K matrix power of the matrix APub.66 So long as the spectral radius of APub

66For K = 1, we simply have

exp (t̄ij,1)
�⇢ =

X

m

exp(�⇢tij(m)) =

2

4
X

m2BPub

A(m)

3

5

ij

= AijPub.

Now suppose that exp (t̄ij,K)�⇢ =
⇥
AK

Pub

⇤
ij

. This is the sum of all weights along all paths between ij of length K. To compute
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is less than one,
P1

K=0 A
K
ijPub = (I�A)�1 ⌘ BPub and

t̄ijPub = � 1

�
ln bijPub,

where bijPub is the ij element of BPub. For the car network, as in Allen and Arkolakis (2021)

t̄ijCar = � 1

�
ln bijCar,

where BCar ⌘ (I�A(car))�1
.

To close this module, I need to define how travel costs on each link tkl(m) are determined. I allow these to

depend on exogenous characteristics ekl(m) and, for the car network, the traffic using the link ⌅kl(m) 67 through

the log-linear functional form

tkl(m) = ekl(m)⌅kl(m)�m ,

where �Car > 0 and otherwise is zero. There are LijCar = PijCar|Car⇢
Car

Lij commuters using the car network, and

so the number of car trips using a link is therefore

⌅kl(Car) =
X

ij

⇡
kl
ij (Car)LijCar.

where ⇡kl
ij (Car) is the number of times the average driver between i and j uses link kl. The results from Allen and

Arkolakis (2021) imply

⇡
kl
ij (Car) =

bikCarakl(m)bljCar

bijCar
.

Letting LCar ⌘ [LijCar] denote the matrix of commute flows on the car network, this system can be written in

matrix form as

⌅(Car) = A(Car)� [B0
Car(LCar ↵BCar)B

0
Car]

where � and ↵ are Hadamard product and division operators respectively. This formulation reduces the size of the

matrices that need to be stored, since A(Car),BCar,LCar are all I ⇥ I rather than {⇡kl
ij (Car)} which is I2 ⇥ I

2.

Lastly, I define the exogenous portion of travel costs in the same way as Allen and Arkolakis (2021). Assuming

travel time is given by tkl(m) = (distancekl ⇥ speed
�1
kl (m))�0 and inverse speed is given by speed

�1
kl (m) = �(m) ⇥

⇣
⌅kl(m)

laneskl(m)

⌘�1(m)
⇥ ✏kl(m) where �(m) is a mode-specific shifter and ✏kl(m) is a link-mode-specific idiosyncratic

term, then

tkl(m) =


distancekl ⇥ �(m)⇥ ✏kl(m)

laneskl(m)�1(m)

��0

| {z }
ekl(m)

⇥⌅kl(m)�m ,

the same for paths of length K + 1, we simply multiply by the adjacency matrix and sum across all modes that could be taken
next

exp (t̄ij,K+1)
�⇢ =

X

m2BPub

h
AK

PubA(m)
i

ij

=

2

4AK

Pub

X

m2BPub

A(m)

3

5

ij

=
h
AK

PubAPub

i

ij

=
h
AK+1

Pub

i

ij

.

This proves the conjecture.
67A previous version of the paper allowed for congestion on the bus and TransMilenio network too.
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where �m ⌘ �0�1(m).

Traffic Equilibrium. Collecting the previous results, a traffic equilibrium is a vector {tkl(m),⌅kl(m), t̄ij} that given

commute flows Lij and parameters �0, �1(m), b̃(m), �(m), laneskl(m), distancekl satisfies the system

tkl(m) = ekl(m)⌅kl(m)�m

⌅(Car) = A(Car)� [B0
Car(LCar ↵BCar)B

0
Car]

t̄ijPub = � 1

�
ln bijPub

t̄ijCar = � 1

�
ln bijCar

A(m) =


exp

⇣
tkl(m) + b̃(m)

⌘��
�

kl

APub =
X

m2BPub

A(m)

ACar = A(Car)

BPub = (I�APub)
�1

BCar = (I�ACar)
�1

LijCar = PijCar|Car⇢
Car

Lij

PijCar|Car =
exp (�t̄ijCar)

exp (�t̄ijCar) + exp (�t̄ijPub)

The first three rows is a system of as many equations as unknowns, while the second three rows define the auxiliary

variables of that system.

I refer to this as the traffic module of the model: it determines travel times t̄ij given a matrix of commute flows L.

Recall that the baseline model pins down changes in economic activity {L̂Ri, L̂Fi, r̂Ri, r̂Fi, �̂Ri, �̂Fi,
ˆ̃�Fi,

ˆ̃
LFi,

ˆ̄
U, Ê}

given a change in travel times {d̂ij}. I therefore also need to express the change in travel times as a function of the

change in commute flows. I will model changes in transit infrastructure as a change in the number of lanes on the

mode in question, \laneskl(m). In particular, when simulating the removal of TransMilenio I will set \laneskl(m) to a

very small number 8kl,m = TransMilenio so that t̂kl(m) ! 1.68 In response to this change in model parameters,

the change in traffic equilibrium can be written as

t̂kl(m) = \lanes
��m

kl (m)⌅̂�m

kl (m)

⌅̂kl(Car)⌅kl(Car) =
h
A0(Car)� (B0

Car)
0
(L0

Car ↵B0
Car) (B

0
Car)

0
i

t̄
0
ijk � t̄ijk = � 1

�
ln
�
b
0
ijk/bijk

�
k 2 {Pub, Car}

A0(m) =


exp

⇣
t̂kl(m)tkl(m) + b̃(m)

⌘��
�

kl

A0
Pub =

X

m2BPub

A0(m)

B0
Pub = (I�A0

Pub)
�1

68Since êkl(m) = \laneskl(m)��m , setting lanes equal to zero in the counterfactual would leave êkl(m) = 1 and the new
equilibrium would be undefined.
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B0
Car = (I�A0(Car))�1

This provides a system that pins down {t̂kl(m), ⌅̂kl(Car), t̄0ijk�t̄ijk} given data from the initial equilibrium {⌅kl(Car), b̃(m), tkl}
and commute flows in the counterfactual equilibrium L0 = L̂� L. Since d̂ij = exp

�

�
t̄
0
ij � t̄ij

��
with t̄ij as defined

above, this pins down the change in commute costs given the shock to infrastructure \laneskl(m) and the change

in commute flows L̂. Combining the economic module of the model with the traffic module provides one large

system of equations that jointly finds the distribution of changes in economic activity and traffic that is consistent

with equilibrium in both modules of the model.

Calibrating the Model. To solve the model in changes, I require values for the parameters �, �1(m),�, b̃(m), �(m)

and data tkl(m),⌅kl(m). Note that link-level traffic and travel times are unobserved, so these will be have to be

calibrated along with the deep model parameters.69

Given a value for the parameters �, �1(m),�, I need to solve for the preference shifters b(m) and speed shifters

�(m). I estimate these to match average speed and choice shares for each mode. With these in hand, I can solve for

tkl(m),⌅kl(m) which are consistent with the model and observed data given deep parameters �, �1(m),�.

Lastly, I calibrate these deep traffic parameters �, �1(m),� to existing values from the literature. First, I set the

routing elasticity � = 175 from Allen and Arkolakis (2019). This implies highly elastic routing choices, so that

commuters take close to the least cost route between origins and destinations. Second, as in Allen and Arkolakis

(2021) I set �0 = 1/✓ to match a unit distance elasticity. Lastly, I calibrate �1(Car) to give a congestion elasticity

�Car = �0�1(Car) = 0.06, the average congestion elasticity estimated for Bogotá by Duranton and Akbar (2017).

�m = 0 for all other modes.

E.3 Endogenous Floorspace Use with Fixed Housing Supply

This section considers an extension of the baseline model in which total floorspace supply is fixed but the share

used for commercial purpose #i is endogenous. To rationalize differences in commercial and residential floorspace

prices, we allow for a tax equivalent of zoning regulations which mean that floorspace owners receive (1�⌧i)rFi for

each unit of floorspace allocated to commercial use. Denoting ri = rRi, no arbitrage across floorspace use implies

rFi = (1 � ⌧i)ri. This implies that the share of floorspace used for commercial purpose and the floorspace price is

pinned down by

#i =
HFi

HRi +HFi
=

(1� ↵)
⇣
w

↵
i ((1� ⌧i)ri)

1�↵
⌘1��

A
��1
i E

(1� �)�1/✓
Ri L

✓�1
✓

Ri + (1� ↵)
⇣
w

↵
i ((1� ⌧i)ri)

1�↵
⌘1��

A
��1
i E

ri =
(1� ↵)

⇣
w

↵
i ((1� ⌧i)ri)

1�↵
⌘1��

A
��1
i E + (1� �)�1/✓

Ri L
✓�1
✓

Ri

Hi
.

69To construct these, I need values for distancekl and laneskl(m). For walk, car and bus networks these are computed between
adjacent census tracts. distancekl is the minimum distance on each mode’s network between adjacent tract centroids along the
network. For non-adjacent tracts or adjacent tracts not connected by a network, distancekl = 1. For the TransMilenio network,
distancekl is finite for two census tracts that are directly connected via the network, i.e. there is no stop between them. The
number of lanes is equal to one for any pair of connected tracts for the walk, bus and TransMilenio network. For the car
network, I first construct dummies for whether a paid is connected via primary, secondary and tertiary connections (which are
not mutually exclusive; a pair can be connected via multiple road types). I then assign 5 lanes to primary connections, 2 to
secondary connections and 1 to tertiary connections to approximate the road widths documented in Google Earth, and then
compute the total number of lanes between a pair as the sum all road type connections (i.e. the maximum number of lanes is 8).
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These equations hold for mixed use locations with #i 2 (0, 1), which one can show to be locations where ūi > 0

and Āi > 0. If either exogenous amenities or productivities are zero in a location, that location becomes completely

specialized in that type of floorspace.

Extending the equilibrium system to incorporate these new equations, and writing in changes assuming unob-

servables are constant across periods yields the system

L̂
1�✓µU

Ri r̂
✓(1��)
i = ˆ̄

L
ˆ̄
U

�✓�̂Ri

r̂i =
#i

�
ŵ

↵
i r̂

1�↵
i

�1�� ˆ̃
L
µA(��1)
Fi Ê + (1� #i)�̂

1/✓
Ri L̂

✓�1
✓

Ri

Ĥi

r̂
(��1)(1�↵)
i

ˆ̃
L

✓+(��1)(↵�µA(✓�1))
✓�1

Fi =
⇣
ˆ̄
L
ˆ̄
U

�(✓�1)
⌘�↵(��1)+1

✓�1
Ê
ˆ̃�

↵(��1)+1
✓�1

Fi

#̂i =

�
ŵ

↵
i r̂

1�↵
i

�1�� ˆ̃
L
µA(��1)
Fi Ê

(1� #i)�̂
1/✓
Ri L̂

✓�1
✓

Ri + #i

�
ŵ

↵
i r̂

1�↵
i

�1�� ˆ̃
L
µA(��1)
Fi Ê

ŵj =

 ⇣
ˆ̄
L
ˆ̄
U

�✓
⌘ ✓�1

✓

ˆ̃
LFj

ˆ̃�Fj

! 1
✓�1

The two equations for r̂i and #i are no longer log-linear. However, taking logs, differentiating the original system

and substituting out for wages yields the following first order approximation of the system

2

666664

1� ✓µU ✓(1� �) 0 0

�(1� #i)
✓�1
✓ (1 + #i(� � 1)(1� ↵)) #i(� � 1)
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0

0 (� � 1)(1� ↵) ✓+(��1)(↵�µA(✓�1))
✓�1 0

(1�#i)(✓�1)
✓ (� � 1)(1� ↵)(1 + #i) �(1� #i)(� � 1)

h
µA � ↵

✓�1

i
1

3

777775

2

66664

ln L̂Ri

ln r̂i

ln ˆ̃
LFi

ln #̂i

3

77775
=

2

66664

1

(1� #i)
1
✓

0

�(1� #i)
1
✓

3

77775
ln �̂Ri +

2

66664

0

#i
(��1)↵
✓�1

1+↵(��1)
✓�1

↵(��1)(1�#i)
✓�1

3

77775
ln ˆ̃�Fi

+

2

666664

✓ ln ˆ̄iu+ ln ˆ̄
L� ✓ ln ˆ̄

U

�#i(� � 1)↵
⇣

1
✓ ln

ˆ̄
L� ln ˆ̄

U

⌘
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Now the A, bR, bF terms have data in them through the initial floorspace share terms #i. This system can once again

be written as

ln ŷi = A
�1

bR ln �̂Ri +A
�1

bF ln �̂Ri + ei

where A =

2

666664

(1� ✓µU ) I ✓(1� �)I 0 0

�(1� diag (#i))
✓�1
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bR =

2

66664

I

1
✓ I

0

�(I � diag (#i))
1
✓

3

77775

4I⇥I

bF =

2

66664

0
↵(��1)
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1+↵(��1)
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3
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Two insights follow from comparing this system to the equilibrium in the baseline model. First, there are now

heterogenous elasticities across locations since the A
�1 matrix contains data on initial land shares which differ by

location. Second, since A is no longer block diagonal, each outcome now depends on both RCMA and FCMA.

E.4 Housing Supply Adjustment and Land Value Capture

Housing Supply. This section outlines the extension of the model allowing for a housing supply response to the

transit infrastructure. First, we consider a model where housing supply can freely adjust in each location, and

floorspace use is endogenous as in Section E.3. Housing is produced according to the Cobb-Douglas technology

Hi = T
1�⌘
i K

⌘
i . The price of capital is normalized to one. Defining the production function on one unit of land as

hi = k
⌘
i where ki ⌘ Ki/Ti, developers solve the problem

max
ki

k
⌘
i ri � ki � pi

where pi is the price of land in i. This yields the density of construction per unit of land of ki = (⌘ri)
1

1�⌘ and profits

⌘̃r

1
1�⌘

i � pi were ⌘̃ ⌘ ⌘
⌘

1�⌘ . The price of land adjusts so that developers earn zero profits pi = ⌘̃r

1
1�⌘

i . Total housing

supply is then given by Hi = Ti(⌘ri)
⌘

1�⌘ . The share of floorspace allocated to commercial use #i is determined as in

Section E.3. The remainder of the model equations are unchanged; this housing supply condition is simply added

to them. To ensure this fits the data in the initial period, a residual ⇣i = Hi/Ti(⌘ri)
⌘

1�⌘ is introduced so that the

effective units of land are actually Ti⇣i. This wedge can be interpreted as the quality of land.

Land Value Capture. In the Land Value Capture scheme, only a subset of locations are allowed to have their

floorspace adjust.

Under the distance-based scheme, locations i 2 I within 500m from a station are allocated a 30% increase in

floorspace. Their floorspace is allowed to increase up to a maximum of 30%, but not decrease (which is the relevant

case for a relatively short 16 year time horizon). That is,

Ĥi =

8
>>><

>>>:

max{1, (r̂i)
⌘

1�⌘ } if i 2 I and max{1, (r̂i)
⌘

1�⌘ } < 1.3

1.3 if i 2 I and max{1, (r̂i)
⌘

1�⌘ } > 1.3

1 if i /2 I.

Perfect competition ensures the price of the permits adjust so that that developers earn zero profits, so income from

the scheme is (H 0 �Hi)r0i where prices are evaluated in the new equilibrium.

Under the CMA-based scheme, locations are allocated permits proportional to their change in CMA #i� ln�Ri+
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(1 � #i)� ln�Fi so that the number of potential new permits (or, equivalently, the maximum amount of new

floorspace created) is the same as under the distance-based scheme. Here #i is the commercial floorspace share

in the initial equilibrium and the CMA changes are those using the baseline measure that hold population and em-

ployment fixed at their initial levels, so this is all information which the policy maker would have at the time of the

intervention.

Parameterization. In the quantitative exercises, a conservative choice for the housing elasticity is made so that

⌘/(1� ⌘) = 0.7 to match the most inelastic cities in the US from Saiz (2010). This value corresponds to his value for

Oakland, CA which is ranked the 6th most inelastic city, one position behind San Francisco and San Diego (3rd and

4th) and a couple ahead of New York and Chicago (9th and 12th). I also shut down spillovers for a conservative

estimate, especially in the open city case where a large value for the amenity spillover can lead to larger changes in

population than in the baseline model.

E.5 Employment in Domestic Services

This section outlines the extension of the model that incorporates employment in domestic services. I begin by

noting the following facts. First, between 2000-2014 in the GEIH 7.3% of non-college educated Bogotanos worked

as domestic helpers while almost no college educated workers did. Second, in the 2014 Multipurpose Survey I

observe that 30.3% of college-educated households employ domestic services, compared to only 3.6% of non-college

households. Third, conditional on employing domestic servants households spend on average 0.15 of their income

on their wages, a fraction that remains constant with income. Unfortunately employment in domestic services

by employment location is reported neither in the census nor in the CCB. Therefore, given that 90% of domestic

servants are employed in college educated households, I impute domestic employment by assigning each worker

equally to high skilled households and scaling up until the total matches the number observed in the GEIH.

These observations motivate the following extension of the model. I assume that only high-skilled households

consume domestic services while only low-skilled workers are used in its production. I also assume domestic

services enter the utility of the high skilled according to Cobb-Douglas preferences with an expenditure share of

0.045 (=0.303*0.15). That is, I assume the common component of utility is given by

UH = C
1��H��D (H � h̄)�HD

�D

H

In each location, a perfectly competitive firm produces domestic services under the linear technology YiD = L̃FiL.

The cost is therefore equal to the low-skill wage p
D
i = wLi. Market clearing for domestic services therefore requires

that

�DEiH = p
D
i Di =

wLiL̃
D
FiL

ĀDi

where ĀDi is a residual that ensures this condition holds and reflects factors that make i more or less easy to work

in as a domestic servant.

The equilibrium equations of the model remain the same, apart from the labor demand equation which becomes
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and the expression for residential populations for high skilled which becomes

LRiag = L̄g

✓
uiag(Tg�

1/✓
Riag � h̄rRi � paa)r

��1
Ri w

�D

g

Li

◆⌘g

P
r,o

⇣
urog(Tg�

1/✓
Rrog � h̄rRr � poo)r

��1
Rr w

�D
g

Lr

⌘⌘g
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The other ingredients of the model are unchanged. The procedure to solve the model and unobservables is un-

changed, other than for wages. The system of equations is extended to include the domestic service sector:
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where IgL is a dummy for whether g is L, and LFiD is employment in domestic services as described above.

E.6 Home Ownership

This section outlines the extension of the model that allows for local home ownership across worker groups to

match the ownership rates observed in the data. In the data, home ownership rates are 0.603 and 0.457 for college

and non-college individuals respectively in 2015. Letting oL and oH be the shares of home owners in the data, I

therefore assume that total income is given by

wjg✏j(!)

dija
+ og

Ei

LRi

where Ei =
P

g,a

�
rRih̄+ (1� �)(ȳiag � paa� rRih̄+ ⇡ig)

�
LRiag is total expenditure on housing by residents of i,

LRi are total residents in i and ⇡ig ⌘ og
Ei

LRi

is income from home ownership. That is, the model is the same with

one replacement of ⇡ with ⇡ig . The remaining equilibrium equations and procedure to solve for unobservables are

easily extended to incorporate this change.

F Data Appendix

This section provides supplementary information on the data used in this paper.

F.1 Dataset Description

Population

The primary source of population data is DANE’s General Census of 1993, 2005 and 2018. This contains the pop-

ulation in each block by education-level. I define “college” educated workers to be those with more than post-

secondary education (defined by the level achieved during their last complete year of study). This contains both

conventional universities and technical colleges, but the small size of the latter means the results are not sensitive

to this grouping. My main results include adults 20 and older; the results are robust to including individuals of all

ages.70

70The data provided to me by DANE provided population totals by education level and age across 10 year age bins.
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Commuting

Commuting data comes from the city’s Mobility Survey administered by the Department of Mobility and overseen

by DANE. Conducted in 2005, 2011 and 2015, these are household surveys in which each member was asked to

complete a travel diary for the previous day. For 1995, I obtained the Mobility Survey undertaken by the Japan

International Cooperation Agency (JICA) to similar specifications as the DANE surveys. The samples sizes are

similar across years, including 141,316 trips for 73,830 individuals in 20,002 households per round on average.71 I

include only trips that originate or end in municipal Bogotá in the analysis.72 Sampling weights are also provided.

The survey reports the demographic information of each traveller and household, including age, education,

gender, industry of occupation, car ownership and in some years income.73 For each trip, the data report the

departure time, arrival time, purpose of the trip, mode, as well as origin and destination UPZ.74 Since all trips are

reported, these include commutes (trips to work) as well as for other purposes (e.g. shopping, seeing friends).

Reported modes are often quite detailed (e.g. 25 options in 2011); I often aggregate into car, bus, TransMilenio, and

others (walking, bicycle, motorbike). Trips on TransMilenio trunk and feeder buses are reported separately, so I

consider TransMilenio trips to be those involving at least one stage on a trunk bus (multiple modes can be reported

in a single trip).

Housing

As described in the main text, the mission of the cadastre is to keep the city’s geographical information up to date

and thus 98.6% of the city’s more than 2 million properties are included.75 The city is recognized as a pioneer on

the continent for the quality of its cadastre (Anselin and Lozano-Gracia 2012). In addition to having an updated

record of the city’s layout, the cadastre is important for the government due to its importance in city revenues:

in 2008, for example, property taxes accounted for 19.8% of Bogotá’s tax revenues (Uribe Sanchez 2010). These

taxes depend on assessed property values. In developed countries, property valuations are typically determined

using data on market transactions. However, Bogotá, like most developing cities, lacks comprehensive records

of such data. The city circumvents this by assessing property prices as follows. First, they collect available data

on transactions through outreach to the real estate sector (Uribe Sanchez 2010). Second, through a census-like

process officials collect information on property sales announced through signs and local newspapers, survey these

properties and then contact the owners pretending to be potential buyers. They negotiate to get as close as possible

to an actual sales price and record the final value, under the premise of a cash payment (Anselin and Lozano-Gracia

2012). Third, the city hires teams of professional assessors to value at least one property in one of each of the city’s

“homogenous zones”, which currently exceed 16,000 (Ruiz and Vallejo 2010).76 The net effect of these efforts should

be that a comprehensive record of property values which are less prone to under-reporting for tax avoidance.

71Minima-maxima across years are (i) 117,217-169,766 trips, (ii) 58,313-91,765 individuals and (iii) 15,519-28,213 households.
72Municipal Bogotá accounts for 85% of the residents of the Bogotá metropolitan area, and only 5% of employment in munic-

ipal Bogotá comes from outside the municipality (Akbar and Duranton 2017)
73The 1995 survey reports raw income, while in 2011 and 2015 eight income bin dummies are reported.
74In certain years more precise spatial information is reported, such as address of origin and destination in 2011, but UPZ are

consistently reported across all years.
75I confirmed this comprehensive coverage by overlaying the shapefile of plots with data over satellite images.
76These zones are determined by employees of the cadastral office who physically walk around the city and classify each

neighborhood into a zone of similar attributes based on observation and their knowledge of the city. Criteria used to define
“homogeneity” include categories for main activities, access to public services, and dominant land use. This process is extremely
cost intensive, representing around 73% of the total costs of estimating cadastral values (Anselin and Lozano-Gracia 2012).
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The city then combines this data on actual and assessed valuations with building characteristics to construct as-

sessed values for each property. By law, during every updating process each parcel must surveyed by enumerators

using a “parcel form” that contains more than 60 questions about the property.

One concern is whether properties surveys and assessments are made very infrequently, with annual changes

based solely on an aggregate inflation rate. While assessments are indeed inflated on a yearly basis, information for

individual properties is frequently updated through visits: between 2000 and 2006 over 1,036,000 properties were

updated, while a large push in 2008-2009 updated all of the city’s 2 million properties (Ruiz and Vallejo 2010).77 My

primary focus on long-differences in housing market outcomes ensures that data for essentially all properties was

updated.

To validate the valuations in the cadastre, I compare these assessed values per m2 in 2014 with purchase prices

per room reported in DANE’s 2014 Multipurpose Survey. This survey is a slightly more detailed version of the

household survey discussed below. One question asks respondents to report the purchase price and year for their

current home. I keep the 5,497 observations for which the purchase was made in the past 10 years,78 and compute

the average price per room within each locality (the smallest geographical unit in the survey). I merge these year-

locality observations with the average price per m2 of residential floorspace in the cadastral database, and take

weighted averages of both cadastral and reported unit prices across years where I weight by the number of obser-

vations in each year. Figure A.8 plots the average cadastral price against the reported purchase price, normalizing

each variable to have unit mean. The measures have a high correlation coefficient of 0.947, with the majority of

observations lying along the 45-degree line. Importantly, there appears to be no deviation of the relationship for

expensive neighborhoods, which we would expect if cadastral values were systematically over- or under-valuing

these properties.79 Consistent with the city’s efforts, it appears that property values in the cadastral data are fairly

accurate representations of actual property prices throughout the city.

Finally, to construct comparable measures of floorspace prices by census tract I purge property prices driven

by differences in building composition by regressing log floorspace prices per m2 on property characteristics (age

bins, point bins) and a set of census tract fixed effects, and recover these fixed effects.

Employment (Firms)

The employment data used in this paper comes from two sources. The first is a census of the universe of estab-

lishments from DANE’s 2005 General Census and 1990 Economic Census. Panel A of Table A.10 presents some

summary statistics. There are many small firms in both years: while average firm size is close to 5 employees, the

median firm only has 2 employees while firm size at the 90th percentile is between 6 and 7.

The second source is a database of all registered establishments from Bogotá’s Chamber of Commerce (CCB by

its Spanish acronym) in 2000 and 2015. The 2015 dataset contains the block of each establishment, its industry and,

in many cases, the number of employees. Keeping only observations with non-missing values for all 3 variables

leaves around 126,867 observations as reported in Panel B. In 2000 neither the number of employees nor the block

are reported, but it does provide the address. Bogotá’s clear grid system made it straightforward to geolocate the

77Updated assessments and property transaction records were conducted throughout, with assessments for each homogenous
zone being updated during the 2008-2009 comprehensive update.

78The results are not sensitive to this choice.
79Of course, while it is possible that values in the Multipurpose survey themselves are biased, there is no strong reason to

think this would be the case since DANE enumerators are well-trained in making clear that responses are anonymous and for
statistical purposes only.
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vast majority of these.80 Retaining establishments with non-missing industry codes left 34,332 observations.

Two aspects of the CCB data need addressing. First, there is the absence of employment data for 2000. I therefore

rely on establishment counts as a measure of employment when using the CCB in the main analysis. In the 2015

data, I compute the number of establishments in a locality as well as the mean employment and find a correlation

of 0.033. In the 2005 census, the correlation is 0.09. Since average establishment size is fairly constant across the city,

this suggests establishment counts are a fairly good proxy for employment.

Second, the coverage of establishments is much lower than in the census. While aggregate coverage gaps

will not matter for the analysis, relative differences across the city will pose a problem since relative changes in

employment in the CCB data may not be representative of actual changes (for example, if informal employment is

more likely to be located in certain areas than others).81 I diagnose the representativeness of the CCB dataset by

comparing its spatial distribution of establishments with that reported in the 2005 census. Panels (a) and (b) Figure

A.7 plots the density of establishments in each locality in the CCB dataset in each year on the y-axis against the

density of establishments in the 2005 census on the x-axis, normalizing both variables to have unit geometric mean.

Both figures show a reassuringly tight relationship, with correlations of 0.948 and 0.949 respectively. Importantly,

the majority of localities lie along the 45-degree line regardless of whether they are poor (Ciudad Bolivar, Kennedy,

Bosa, Tunjuelito) or rich (Chapinero, Usaquen), implying that the coverage is fairly uniform across different types

of neighborhoods. Panel (c) confirms that the uniform coverage holds across smaller spatial units, by comparing

establishment counts across 631 sectors.

Employment (Workers)

Worker-level employment data comes from DANE’s Continuing Household Survey (ECH) between 2000 and 2005,

and its extension into the Integrated Household Survey (GEIH) for the 2008-2014. These are monthly labor market

surveys covering approximately 10,000 households in Bogotá each year. In the external processing room of DANE’s

offices in Bogotá, I was able to access versions of these datasets with the block of each household provided.82 The

sampling scheme is a repeated cross-section, and so while it is possible to document changes within geographic

areas it is not possible to track individuals over time. The survey includes questions pertaining to individual and

household characteristics, as well details on employment such as income, hours worked and industry of occupation

across primary and secondary jobs.

Maps and other Datasets

The city provides a geodatabase for use in ArcMap containing spatial datasets on the features of Bogotá. From the

road layer I extract shapefiles for primary, secondary and tertiary roads. Walk routes consist of the union of the

road network in addition to some smaller pedestrian-only paths. The routes of the bus official bus system (which

was integrated towards the end of 2012) are also provided. Given that the aim of the government was to bring the

provision of existing routes under one integrated system, I use these current routes to measure the location of the

80The success rate was around 95%. Addresses in Bogotá are of the form C26#52-18 which stands for the 26th street (Calle in
Spanish) and 52nd avenue, 18 meters from the intersection.

81Note that I also require the coverage of the CCB to be representative of overall employment across 1-digit industries used in
the analysis, too. I find this indeed to be the case, the correlation between the share of establishments in each 1 digit industry in
the CCB data vs the 2005 census is 0.991 in 2015 and 0.984 in 2000.

82Public versions provide no additional geographic information within the city
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bus network throughout the period.83 Since buses tended to ignore posted bus stops, I create random bus stops

every 250m along each route. The database also includes TransMilenio stations and routes, as well as the routes of

feeder buses (which I create stops for in the same way as for normal buses). Finally, I use the topographical layer to

compute the slope of land across the city in the computation of the least cost construction path instrument.

In all datasets above, the spatial units are either defined through the Cadastre or DANE’s classification. The

city’s geodatabase provides a map of the geography used by the Cadastre (down to the property-level), while DANE

provides a shapefile for their map at the block-level. Luckily, these spatial units remained essentially constant

during my period of study.84 I merge the Cadastre’s map to DANE’s to use as consistently across analyses, and

compute the distance from each tract centroid to particular features (CBD, nearest main road, nearest TransMilenio

station in each year) in ArcMap. I place the central business district at the center of the high employment density

area in the center-east of the city. This is the historical center of the city cited in the literature; when including this

variable in regressions I will allow for a different coefficient depending on whether a tract is in the North, West or

South of the city in order to account for the different types of neighborhoods in each axis of the city.

Geographic units referred to in the paper consist of localities (19), UPZs (113), sectors (631), census tracts or

sections (2,799) and blocks (43,672).

Lastly, data on crime come from the Bogotá police department, and report the GPS location of all reported

violent, property and sexual crimes between 2007 and 2013.

F.2 Computing Commute Times

I compute commute times using the Network Analyst toolbox in ArcMap. This accepts as inputs a set of points to

be used as origins and destinations (census tract centroids in my setting), as well as a network consisting of a set of

edges and nodes at which these edges can be traversed. Each edge of the network is assigned a cost to travel along

it; the toolbox then uses Djikstra’s algorithm to compute the least cost paths connecting any origin-destination pair.

In my setting, the networks are defined separately for each mode of transit. The walk network consists of single

layer of pedestrian paths. The car network consists of the union of primary, secondary and tertiary roads, that can be

joined at any intersection, each of which is associated with a different speed. The bus network is comprised of bus

routes described above as well as the walk network; the two intersect only at bus stops which are placed randomly

every 250m. The TransMilenio network consists of the trunk network (which can only be entered at stations), the

feeder bus network (which can be entered at stops placed in the same was as for buses), and the walk network.85 In

order to compute the time cost to traverse each edge of these networks, it remains to assign a speed to each mode.

While Section G provided evidence that speeds were not changing on routes affected by TransMilenio relative

to other locations, Table A.12 shows that aggregate speeds were not quite constant over the period. There was

a significant reduction in speeds between 1995 and 2005 (a period of city expansion), which remained relatively

constant thereafter. I therefore seek to assign two sets of speeds to match the distribution of observed commute

times in the “pre” and “post” periods. In the main results, I use the average of both but provide evidence in

83While I acknowledge this might introduce measurement error in the bus network location for early years, the strong associ-
ation between predicted times and those observed in the 1995 Mobility Survey suggests this is a fairly good approximation.

84For the cadastre, while old properties were partitioned and new ones created, the underlying block structure and “barrios”
remained unchanged (up to new ones being added as the city grew). Similarly, existing blocks and census tracts DANE’s map
were kept in almost all instances unchanged, again up to new blocks being added between 2005 and 1993.

85From the commuting data, I observe that the majority of trips taken by TransMilenio do not involve other buses (other than
feeders). Therefore I exclude the bus network in the construction of the baseline TransMilenio.
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robustness checks that the results are similar if either set of times is used separately. Finally, note that average

speeds reflect the net effect of traveling on different road types (for cars), modes (for buses and TransMilenio) as

well as wait times incurred at transfers.

I set speeds to match travel times observed in the data for commutes to and from work during rush hours

in the Mobility Surveys (departing between 5-8am and 4-6pm). I set walk speeds to 5km/h in all years (Ahlfeldt

et. al. 2015). Car speeds were reportedly as high as 27 km/h (Steiner and Vallejo 2010) in early years, while

the Department of Mobility reports average speeds along main roads of 24 km/h from 2010-2015. To allow for

additional time spent parking and slower speeds during rush hours, I set speeds of 20 km/h, 14 km/h and 10 km/h

on primary, secondary and tertiary roads respectively for the pre-period, and 14 km/h, 10 km/h and 8km/h for

each type during the post-period. Buses were reported to travel at 10 km/h during rush hour before TransMilenio,

with some estimates as low as 5 km/h (ESMAP 2009; Muller 2014). I set bus speeds of 13 km/h and 11 km/h for the

pre- and post-period respectively, and set transfer times of 4 minutes to enter or exit the network by foot implying a

total of 8 minutes spent waiting on each trip. Finally, most reports cite system speeds of 26.2km/h for trunk service

on TransMilenio routes (Cracknell 2003; Transportation Research Board 2003). However, this was for earlier years

and reports suggest speeds may have slowed later on. I therefore set speeds of 26 km/h for the pre-period and

20 km/h for the post-period. I set the speed of feeder buses equal to those of regular buses, and again impose a 4

minute transfer time to enter or exit each network.86

Figure A.10 explores how these predicted times compare with those observed in the data. I construct observed

times for each mode using those reported in the Mobility survey for rush hour trips to and from work, and create

an average for each origin-destination UPZ pair. I construct the predicted time for the same trip by taking an area-

weighted average of the commute times calculated in Arc between each census tract pair within the UPZ pair. I use

1995 as the pre-period for each mode other than TransMilenio for which I use 2005, and 2015 as the post-period. For

each mode, the times are highly correlated with the majority of observations lying close to the 45-degree line.

In the main results, I use the average of the pre- and post-period calibrated commute times from ArcMap. In

columns (1)-(3) of Table A.14, I run difference in difference specifications to formally test whether the coefficient

from a regression of log observed times on log (average) predicted times changes over time. The difference in

slopes in the third row are insignificant for cars and TransMilenio, but is positive for the case of buses. However,

inspection of Figure A.10 suggests this is driven by a drop in the intercept for 2015 caused b y movements in

the left tail: overall the majority of points lie along the 45-degree line in both years.87 Finally, the last column

examines whether the relationship between predicted and observed times is constant across modes within a year.

The insignificant coefficients in rows 4-8 confirm this to be the case.

F.3 Constructing the Instruments

Least Cost Construction Path From Transportation Research Board (2007), I obtain engineering estimates for

building BRT on different types of land. Their estimates suggest it costs $4mm to build a mile of BRT by converting

a median arterial busway, $25mn to build a new bus lane on vacant land, $50mn to build an elevated lane and

86I decided on these times to balance the reported speeds in the literature and matching those in the data. Unfortunately, there
was not a simple way to automate the procedure to choose speeds that matched the fit with the data since each creation of a
Network dataset in ArcMap must be done manually.

87Attempts to shift the intercept by varying the fixed time cost within reasonable bounds had negligible effects on this speci-
fication.
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$200mn to build a tunnel.88 The maximum grade of BRT is 10% for short runs (Barr et. al. 2010), so I assume tunnels

are built on land steeper than that. I assume that building over developed land costs twice as much as vacant land.89

I then digitize a land use map of the city in 1980 produced by the United States Defense Mapping Agency (Figure

A.11, panel (a)) and clean the image into vacant, arterial road, water and developed land use categories. I infill the

medians that can be seen in between a handful of large main roads throughout the city, so that these are also coded

as arterial. I then compute the share of each land use category in each 20m by 20m pixel, and use a topographical

shapefile to compute the average slope in each pixel. Multiplying the share of each land use type by the prior cost

estimates yields a cost to build BRT on each pixel. Panel (b) of Figure A.11 shows the results, with lighter shades

representing higher cost.

I read this cost raster into Matlab, and use the Fast Marching Method to compute the least cost routes between

portals and the CBD. Panel (c) of Figure A.11 shows the resulting paths. We see that for the majority of cases, the

actual lines follow the least cost routes suggesting that conditional on the locations of origin and destinations the

costs were a large driver of actual placement. To construct the final input for ArcMap, I create stops every 700m to

match the spacing of TransMilenio stations. I add instruments for the Feeder routes by placing a 2km radius disk

around each portal connecting the two with 8 “spokes”, and create stops every 250m.

Tram System From Morrison (2007), I obtained an image of the city’s tram system that was last placed in 1921

and stopped operating in 1951.90 Since the city was far smaller at that time, I digitize the shapefile and extend

the routes to the edge of the city in present day. This might reduce concerns about the direct effects of the tram

instrument, since the large portions of it were not built. Panel (d) of Figure A.11 shows the extended lines (as well

as the originals). As before, I create stops every 700m and construct the least cost commute times in ArcMap using

the same speed of travel as trunk lines.

Instrument Construction These procedures provide counterfactual TransMilenio networks. To construct the

pairwise travel times under each instrument, I take the modern street and transit network and then replace the

Transmilenio with the networks implied by the two instruments. I then recalculate travel times for each pair over

the counterfactual networks.

F.4 Cost-Benefit Calculations

This section presents some of the calculations behind the cost figures in Table A.7. Phase 1 of the system cost

$5.85mm per km to build in 2003 dollars.91 This was financed through local fuel taxes (46%), national government

grants (20%), a World Bank loan (6%) and other local funds (28%). Phase 2 was more expensive at $13.29mm per

km in 2003 dollars, with funding coming from the national government (66%) and a local fuel surcharge (34%).

88These numbers are close to the costs of $8mn per mile in 2003 USD reported by the first phase of TransMilenio (Transportation
Research Board 2003).

89All figures are in 2004 USD and are per mile of construction. Since I have less guidance over the cost of building on developed
land, I experimented with higher values and found the routes were unchanged.

90The chief of the Liberal Party was assassinated during an international conference in Bogota in 1948, after which riots led to
the destruction of one quarter of the city’s trams. Combined with the demand for higher capacity transit, this led to the retiring
of the trams and their replacement with buses. While trams operated on rail lines, the buses that followed shared roads with
cars.

91All figures from Baltes et. al. (2006), except the cost per km for phase 3 which is from https://www.esci-
ksp.org/archives/project/bogota-brt-colombia.
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The higher costs were due to road widening, increased investment in public space and associated infrastructure

improvements. Phase 3 continued the trend costing $20mm per km in 2014 dollars. Averaging over the 41km of

lines in phase 1 and 2 and 21km of lines in phase 3, the average construction cost for the whole 103km network as

of phase 3 was $14.08mm in 2016 dollars.

Operating costs are recovered at the farebox by private operators; the cost to transport a passenger is close to

the fare (Transportation Review Board 2003). Using the figure of 565mm rides in 2013 from BRT Data (2017) and the

fare of $0.66 in 2016 dollars yields an operational cost of $372.97mm per year.

GDP in Bogotá in 2016 from DANE92 is equal to 221,456 bn 2016 Colombian Pesos, equivalent to $72.57bn in

2016 dollars.

G Supplementary Empirical Results

G.1 TransMilenio Trip Characteristics

Table A.11 presents some descriptives of trips taken in Bogotá in 2015. Three points are worth emphasizing. First,

TransMilenio is an important mode of transit constituting 16% of all trips, exceeding the 13.7% taken by cars but

less than the roughly 34% taken by bus and walking. Second, the average TransMilenio trip is 10.5km, far longer

than the 6.6km and 6.1km average trips taken by other motorized transport. The fixed costs involved in reaching

and entering stations make the benefits of BRT pronounced for longer journeys. Third, when compared to other

modes we see that TransMilenio is primarily used for trips to work and business. These constitute around 40% of

trips on the system. For private matters or shopping, walking is by far the dominant mode, reflecting that these

trips tend to be shorter and closer to home. TransMilenio’s outsized role in commuting motivates the focus on its

effects on access to jobs emphasized in this paper.

Table A.12 examines how each mode’s role in commuting has evolved over time. Panel A shows the changes

in each mode’s share of commutes to work. TransMilenio’s rise has been primarily at the expense of a reduction

in bus trips. Panel B shows that TransMilenio is on average 26.7% faster than buses and roughly the same speed

as trips taken by cars.93 TransMilenio speeds have fallen over time as the system has become congested with

greater use over time. Changes in aggregate speeds on cars and buses appears not so correlated with TransMilenio

ridership: speeds fall significantly between 1995 and 2005 (a period of significant population growth of over 29%)

while stabilizing between 2005 and 2015. This highlights the role of external aggregate shocks, such as urbanization

lead by the country’s civil war, that motivates the more local analysis pursued in this paper. Panel C reports a mild

fall in the share of car owners consistent with its decreased role in commuting. However, the persistently higher

proportion of car owners vs car commuters reflects the importance of cars for other trip purposes.

92Source: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-
departamentales/cuentas-nacionales-departamentales-pib-trimestral-bogota-d-c

93Note that these are observed door-to-door speeds rather than system speeds: TransMilenio buses are reported to operate
faster than the results in Table A.12 suggest, but queueing at stations and time taken to walk between stations and final destina-
tions decrease average observed speeds. Average speeds are also conflated by the different nature of trips taken across modes
(such as TransMilenio being used for longer trips, which are typically faster). Section F.2 compares speeds across modes control-
ling for trip characteristics and composition, and reports that while the relative performance of TransMilenio is more muted it
remains a substantive improvement over existing buses.
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G.2 Impact on Other Mode Speeds

BRT may affect equilibrium speeds through impacts on travel mode and route choices, and the number of lanes

available for other traffic. In Bogotá, the number of lanes available for other traffic was left unchanged: one might

then expect TransMilenio to have reduced congestion faced by cars and other buses. To examine the impact of

TransMilenio on car and bus speeds, I run regressions of the form

ln Speedijkt = ↵ij + �TM Routeij ⇥ Postt + �
0
tXijkt + ✏ijt

separately for each mode. Here (i, j) indexes a UPZ origin-destination pair, k indexes an individual, Postt is a

dummy equal to one in 2015 and zero in 1995,94 and Xijkt is a vector of control variables containing individual and

trip characteristics, which are allowed to have time-varying effects on speeds. All specifications include a gender

dummy, hour of departure dummies and age quantile dummies, origin and destination locality fixed effects, each

interacted with the Post dummy. Certain specifications additionally control for log trip distance interacted with the

Post dummy.

The variable TM Routeij captures whether the trip from i to j has been “treated” by TransMilenio. To define

this measure, I compute the routes for the least cost commutes between each pair of UPZ origin and destination

in ArcGIS separately for cars and buses. I then intersect this route with the TransMilenio network (within a 100m

tolerance) to compute the share of a trip that lies along a TransMilenio line. With this in hand, I create two treatment

measures. The first is simply the share of a trip that lies along a TransMilenio line. The second is a dummy for

whether more than 75% of the trip is adjacent to TransMilenio, allowing for a non-linear effect on speed.

Table A.13 presents the results. Once the composition of trips is properly controlled for (columns 2 and 4,

since trips intersecting with TransMilenio are more likely to be longer going from the outskirts to the city center),

TransMilenio has no impact on neither car nor bus speeds. Note this only identifies relative changes in speeds: any

aggregate effect TransMilenio had on the overall level of speeds would be absorbed into the intercept. Consistent

with a small congestion elasticity, Akbar and Duranton (2017) find the elasticity of speed with respect to the number

of travelers is only 0.06 during peak hours in Bogotá, while Akbar et. al. (2021) find that only 15% of differences in

driving speeds in Indian cities are due to congestion.

G.3 Impact on Housing Supply

Table A.15 provides evidence that TransMilenio had no significant impact housing development. The outcome

variable is the growth of total floorspace in a census tract between 2000 and 2018.95 The specification is otherwise

the same as from the baseline specification. Columns 1 and 2 show no significant impact of either CMA term on

floorspace supply. Column 3 provides a robustness check regressing floorspace supply on log distance to each phase

of the system, confirming the previous results. It does appear more development may be happening around the

third phase (the negative coefficient on ln Distance F3), but the effect is insignificant. Column 4 interacts distance

to each phase with a dummy for whether a tract is above the median tract distance from the CBD, to test if more

development is occurring near TransMilenio at the periphery. This does not appear to the case as all the interactions

are insignificant.

94Results are similar when intermediate years are included, and are omitted for clarity.
95I use the Davis-Haltiwanger growth rate gi = (Xit � Xit�1)/(0.5 ⇥ (Xit + Xit�1)) which allows me to incorporate tracts

with no development in 2000.
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Figure A.6 repeats the main event study from Figure 3 with floorspace area as the outcome, and shows no

significant effect either before or after on property development. While there is a noisy increase in development in

8 to 4 years before line opening, this is neither significant nor enough to show up in the aggregate numbers in Table

A.15.

Overall, there was no significant new development close to TransMilenio stations. Reports suggest that con-

straints to re-development restricted the supply response (Cervero et. al. 2013), in large part due to no significant

change in zoning regulations that remained unchanged over the period.

G.4 Impact on Wages and Sorting

Table A.16 examines the impact of market access on income by place of residence. It runs a difference-in-difference

specification similar to (16) to examine the effect of improved RCMA on log average weekly labor income reported

by full-time workers between 18 and 55 across UPZs. Since the survey is a sample survey, there are not many

observations in each census tract in each period and so the variation in RCMA is aggregated to the UPZ-level.

Standard errors are clustered by UPZ and Post-period pair in Panel A, and by UPZ in Panel B.

Column (1) shows a strong association between improved access to jobs and incomes over the period. However,

column (2) controls for the changing educational composition of workers and shows that about half of the relation-

ship is explained by re-sorting of workers by skill. The result is qualitatively unchanged when controlling for hours

worked in column (3) (i.e. when looking at the wage). While my cross-sectional data do not allow me to control

for individual fixed effects, that wages rise even when controlling for changing worker characteristics supports the

idea that CMA reflects accessibility to high-paid jobs. The last row also reports the results from a test of whether

the coefficient on log RCMA equals 1/✓, and in both panels this cannot be rejected.

Table A.17 examines TransMilenio’s impact on the educational composition of residents. The outcome is the

change in a tract’s share of college-educated residents between 2018 and 1993. In 1993 this is measured within

all adults 18 or older, and in 2018 this is measured within adults 40 and older. This is to try to look within a

cohort, since the overall college share grew substantially over this period. Results are not sensitive to this choice.

Column 1 shows a semi-elasticity of 0.05 of the change in the college share to the change in RCMA. Column 2

examines whether this is mechanical: if the change in RCMA is correlated with the initial college share there may

be mechanically more or less room for the share to increase in exposed locations. Controlling for the initial college

share has little qualitative effect on the coefficient, increasing it slightly. These results suggest the college educated

tended to move into neighborhoods with improved accessibility due to TransMilenio. This is consistent both with

the results in Table A.16, as well as the sorting channel in the model whereby the rich are more likely to move into

neighborhoods with appreciating house prices since they spend a smaller fraction of income on housing.

G.5 Impact of Both Types of CMA

The baseline model predicts no impact of FCMA on residential outcomes and no impact of RCMA on commercial

outcomes (see proof of Proposition 1). Table A.18 extends the baseline specification to include both types of CMA

separately in the regressions. In general, the results are noisy: conditional on the set of controls, there does not

appear to be a huge amount of residual variation in RCMA conditional on FCMA within a locality and vice versa.

For five out of seven outcomes (residential population, commercial prices, commercial floorspace share and census

employment) the basic prediction that RCMA affects residential outcomes and FCMA affects commercial outcomes
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holds in the data, although many of these specifications are noisy. For residential floorspace prices the effect is

similar for both types of CMA, although the effect is noisy and neither coefficient can be distinguished from zero.

For establishment counts in the CCB, the impact is positive only for RCMA.96

Even the fact that floorspace shares are observed to change to TransMilenio already suggests some basic as-

sumptions from the simple model are not borne out in the data, since it assumes floorspace use shares are fixed.

Appendix E.3 extends the model to include this, and shows that a weighted average of CMA types will now mat-

ter for outcomes in each location, where the weights depend on the initial floorspace shares across residential and

commercial uses. In fact, this would be the correct regression framework to use to fully test the model given that

changes in floorspace use shares are observed in the data. However the log-linear reduced form no longer holds

and the constant CMA elasticities are replaced with a more complex matrix of elasticities (where a location’s weight

on each change in CMA depends on its initial floorspace use share). Given the parsimony of the basic model, I focus

on this for the main results. The full model allows for endogenous floorspace use.

G.6 Main Results: Robustness

Table A.1 assesses the robustness of the main results to a number of alternative specifications. First, I use alternative

ways to aggregate mode-specific commute times and alternative travel speeds on each mode (columns 2 to 4).

Second, I vary the commute elasticity ✓ to 1.5 and 0.5 times its estimated value (columns 5 and 6). Third, I consider

only tracts within 3km a TransMilenio station to ensure the results are not driven by outliers at implausible distances

from the network (column 7). Fourth, I use heteroscedasticity robust standard errors and standard errors clustered

at the sector level (560 administrative units above the census tract) in columns 8 and 9. Fifth, I exclude tracts

within 1km of a portal (compared to the 500m exclusion in Table 2) to further ensure the results are not driven

by the targeting of these neighborhoods (column 10). Sixth, I control for distance to a tract’s closest TransMilenio

station interacted with distance to the CBD (column 11). This assesses whether the CMA effect is simply due to

heterogeneity of the distance effect at different distances from the CBD (a possibility given the trends in Figure 1).

Reassuringly, the results are robust to this, highlighting how the key source of identifying variation is local changes

in RCMA within localities.

Seventh, I run an unweighted regression for the change in establishments which is weighted by the initial

share of establishments in a tract in the main results (Table A.5). The unweighted results are significant as controls

are added, but become noisy and insignificant in the full specification in column 3 (p-value of 0.15). I use the

weighted regressions in the main results for two reasons. First, we might expect noise in the CCB data which is a

database of establishments registered with the city’s chamber of commerce rather than a census. Weighting by initial

shares places more weights on tracts where establishment growth is more precisely estimated. Second, I document

sharp positive impacts of CMA on the share of floorspace used for commercial purposes (another measure of the

changing allocation of real production activity). Taken together, these suggest employment is indeed responding to

TransMilenio.

96Digging into exactly why this result is occurring did not lead to clear conclusions. I interpret this as due to the finite sample
nature of the data whereby running enough specifications will lead to some unexpected results in a finite dataset.
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