For Online Publication: Appendix to "Evaluating the Impact of Urban Transit Infrastructure: Evidence from Bogotá's TransMilenio"

Contents

A Additional Tables 2
B Additional Figures 16
C Using A Special Case of the Model to Derive Sufficient Statistics for the Impact of Transit In- frastructure on Economic Activity 23
C. 1 A Simple Quantitative Urban Model 23
C. 2 Sufficient Statistics for Impacts of Transit Infrastructure 25
C. 3 Estimating Demand for Travel Modes 27
C. 4 Estimating the Commute Elasticity θ 27
C. 5 First Order vs Equilibrium Effects 28
C. 6 Examples of Isomorphic Models in Proposition 1 29
C. 7 Reduced Form Coefficients and Residuals 34
C. 8 Proofs \& Additional Derivations 35
C. 9 Bootstrap 50
D Additional Model Results 50
D. 1 Model Inversion 50
D. 2 Calibrating $\alpha_{s g}$ 51
D. 3 Model Solution 52
D. 4 Benchmarking the Amenity Spillovers 53
E Model Extensions 54
E. 1 Migration 54
E. 2 Congestion 54
E. 3 Endogenous Floorspace Use with Fixed Housing Supply 59
E. 4 Housing Supply Adjustment and Land Value Capture 61
E. 5 Employment in Domestic Services 62
E. 6 Home Ownership 63
F Data Appendix 63
F. 1 Dataset Description 63
F. 2 Computing Commute Times 67
F. 3 Constructing the Instruments 68
F. 4 Cost-Benefit Calculations 69
G Supplementary Empirical Results 70
G. 1 TransMilenio Trip Characteristics 70
G. 2 Impact on Other Mode Speeds 71
G. 3 Impact on Housing Supply 71
G. 4 Impact on Wages and Sorting 72
G. 5 Impact of Both Types of CMA 72
G. 6 Main Results: Robustness 73

A Additional Tables

Table A.1: Robustness

	(1) Baseline	(2) Simple Avg Time	(3) Slow	(4) Fast	(5) High θ	(6) Low θ	$\begin{gathered} (7) \\ <3 \mathrm{~km} \mathrm{TM} \end{gathered}$	(8) Sect-Clus SE	(9) Exc. 1 km Nodes	$\begin{gathered} (10) \\ \text { TM X CBD } \end{gathered}$
Panel A: Residents										
\ln (Res Floorspace Price)	$\underset{(0.141)}{0.384 * * *}$	$\underset{(0.134)}{0.368^{* * *}}$	$\underset{(0.141)}{0.401^{* * *}}$	$\underset{(0.134)}{0.467 * * *}$	$\begin{gathered} 0.194 * \\ (0.113) \end{gathered}$	$\underset{(0.205)}{0.749 * * *}$	$\underset{(0.151)}{0.492^{* * *}}$	$\underset{(0.224)}{0.384 *}$	$\underset{(0.189)}{0.320 * *}$	$\underset{(0.170)}{0.399^{* *}}$
N	2,201	2,200	2,198	2,201	2,202	2,205	2,051	2,201	2,008	2,201
R^{2}	0.43	0.43	0.43	0.43	0.43	0.43	0.40	0.43	0.44	0.43
\ln (Res Population)	$\begin{gathered} 0.746 * * \\ (0.304) \end{gathered}$	$\begin{gathered} 0.709 * * \\ (0.289) \end{gathered}$	$\begin{aligned} & 0.460 \\ & (0.301) \end{aligned}$	$\underset{(0.293)}{0.624 * *}$	$\underset{(0.243)}{0.424 *}$	$\begin{gathered} 0.817 * \\ (0.467) \end{gathered}$	$\underset{(0.309)}{0.869 * * *}$	$\underset{(0.399)}{0.746 *}$	$\underset{(0.332)}{0.578 *}$	$\underset{(0.348)}{1.119^{* * *}}$
N	2,256	2,255	2,276	2,276	2,276	2,276	2,102	2,256	2,061	2,256
R^{2}	0.37	0.37	0.37	0.37	0.37	0.37	0.36	0.37	0.37	0.37
Panel B: Firms										
\ln (Comm Floorspace Price)	$\underset{(0.248)}{0.621^{* *}}$	$\underset{(0.255)}{0.665 * * *}$	$\underset{(0.274)}{0.710^{* * *}}$	$\underset{(0.233)}{0.646 * * *}$	$\frac{0.479 * *}{(0.219)}$	$\underset{(0.337)}{1.090 * * *}$	$\underset{(0.253)}{0.567 * *}$	$\underset{(0.268)}{0.621^{* *}}$	$\underset{(0.253)}{0.552 * *}$	$\underset{(0.300)}{0.736 * *}$
N	2,080	2,083	2,073	2,077	2,078	2,083	1,964	2,080	1,902	2,080
R^{2}	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.12	0.11
Comm Floorspace Share	$\underset{(0.088)}{0.291 * * *}$	$\underset{(0.089)}{0.257 * * *}$	$\underset{(0.103)}{0.302 * * *}$	$\underset{(0.084)}{0.231 * * *}$	$\begin{gathered} 0.270 * * * \\ (0.080) \end{gathered}$	$\begin{aligned} & 0.172 \\ & (0.113) \end{aligned}$	$\underset{(0.088)}{0.323 * * *}$	$\begin{gathered} 0.291 * * * \\ (0.105) \end{gathered}$	$\underset{(0.089)}{0.282 * * *}$	$\underset{(0.101)}{0.285 * * *}$
N	2,230	2,233	2,225	2,229	2,228	2,232	2,091	2,230	2,042	2,230
R^{2}	0.15	0.15	0.15	0.15	0.15	0.14	0.16	0.15	0.17	0.15
\ln (Establishments)	1.329*	1.769**	1.449*	1.579**	0.867	3.203***	1.190	1.329*	1.267	1.467
	(0.751)	(0.768)	(0.845)	(0.690)	(0.694)	(0.968)	(0.760)	(0.713)	(0.773)	(0.892)
N	2,028	2,028	2,028	2,028	2,028	2,028	1,913	2,028	1,845	2,028
R^{2}	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.27	0.67	0.68

[^0]Table A.2: Aggregate Welfare Effects: Robustness

	No Migration	Migration
Panel A: Alt. Estimated Params		
Baseline	2.28	0.60
IV	2.25	0.39
IV-Loc	2.45	0.67
Alternative Times	2.07	0.18
θ OLS	2.57	0.69
θ IV	1.16	0.29
Panel B: Alt. Calibrated Params		
$\sigma=4$	2.53	1.19
$\sigma=8$	2.17	0.48
$\beta=0.8$	2.51	0.70
$\beta=0.7$	2.20	0.56
$\rho=6$	2.28	0.57

Note: Table shows the percentage change in average welfare (as defined in Table 6) under alternative parameter values using the sufficient statistics approach. Panel A examines sensitivity to alternative values of estimated parameters. The first row recreates the baseline results. The second row uses the CMA elasticities from the second column of Table 5 which instrument for the realized change in CMA (i.e. the term that does not hold residential population and employment fixed at their initial value in the post-period) using the baseline measure. The third row uses the CMA elasticities from the third column of Table 5 when instrumenting for the realized change in CMA using the LCP and Tram instrument. The fourth row uses the coefficients from column 6 of Table 2, using an alternative method to aggregate mode-specific commute times. The fifth row uses an alternative value for $\theta=3.97$ estimated via OLS in column 3 of Table A.20. The six row uses a value for $\theta=6.15$ estimated via IV using the LCP and Tram instrument in column 4 of Table A.20. Panel B varies the value of calibrated parameters.

Table A.3: List of Parameters and Sources of Identifying Variation

Panel A: Externally Calibrated Parameters

Parameter	Description
σ	Elasticity of substitution between labor
types	
σ_{D}	Elasticity of demand

Panel B: Internally Calibrated Parameters

Parameter	Description
α_{s}	Cost Share of Commercial Floorspace
β	Long-run housing expenditure share
$\alpha_{s g}$	Skill-specific labor demand shifters
\bar{h}	Subsistence housing requirement
p_{a}	Cost of cars
T_{g}	Location parameter of worker productivity distribution

Panel C: Estimated Parameters

Parameter	Description
b_{m}	Travel mode preference shifter
κ	Dependence of commute costs on travel times
λ	Correlation of preference shocks in public mode nest
θ_{g}	Resident supply elasticity
η_{g}	Amenity externality
$\mu_{U, g}$	Productivity externality

Identification Source

Card (2009)
Feenstra et. al. (2018)

Identification Source

Same as description
Expenditure share on housing at high income levels
Share of industry wage bill paid to high-skill workers
Average expenditure on housing

Average expenditure on cars

College wage premium

Identification Source

Mode choice shares conditional on travel times

Sensitivity of mode choices (within commutes) to travel times

Differential sensitivity of mode choices to travel times amongst public modes

Sensitivity of commute choices to travel times (in changes)

Sensitivity of residential populations to instruments for RCMA

Sensitivity of residential populations to shifts in the share of high-skilled residents induced by instruments*

Sensitivity of model productivity residual to shifts in labor supply induced by instruments for FCMA

[^1]Table A.4: Multigroup Model: Robustness

Panel A: Main Robustness				
	Avg Welfare	Inequality	Output	Rents
Baseline	1.007	0.546	2.091	2.143
Migration	0.146	0.044	4.496	5.032
$\sigma_{L}=2.5$	1.294	0.444	2.045	2.188
Census Employment	1.009	0.545	2.092	2.148
$\sigma=4$	0.916	0.595	2.137	2.049
$\sigma=9$	1.077	0.512	2.060	2.201
θ PPML	2.657	0.493	2.998	3.194
θ PPML Diff	0.888	0.851	2.027	1.916
θ OLS	1.960	0.237	2.687	2.945
Joint Pref. Shock	0.831	0.917	0.440	0.585
Panel B: Net Benefit Under Multigroup Model				
\% Net Increase GDP		No Migration	Migration	
		1.47	3.88	

Notes: Panel A shows main results (constructed in the same way as Table 9. Row 1 reproduces the main results. Row 2 uses the open city model with migration elasticity of $\rho=3$ for both groups. Row 3 uses a larger value of the elasticity of substitution between skill groups in production, using the value of 2.5 from Card (2009) estimated at the MSA-level in the US. Row 4 uses census employment measured in 2005 instead of the CCB employment measured in 2015 as the measure of employment in the baseline equilibrium. Rows 5 and 6 use alternative values for the elasticity of demand. Rows 7,8 and 9 use alternative values of θ_{g} estimated in columns 1,3 and 5 of Table 7 respectively. Row 10 has a joint decision over residence and workplace location (with workers having an idiosyncratic preference for each pair). Panel B recreates the net increase in GDP from Panel B of Table 6 for the multigroup model.

Table A.5: Unweighted Establishment Regressions

	(1)	(2)	(3)
Weighted	$2.101^{* * *}$	$1.787^{* * *}$	1.168^{*}
	(0.611)	(0.619)	(0.604)
R^{2}	2,028	2,028	2,028
	0.21	0.23	0.27
Unweighted			
N	1.050^{*}	$1.175^{* *}$	0.697
R^{2}	(0.550)	(0.555)	(0.547)
Locality FE	0.028	2,028	2,028
Log Dist CBD X Region FE	X	0.24	0.27
Basic Tract Controls	X	X	X
Historical Controls		X	X
Land Market Controls		X	X

Note: First row reports the establishment regressions from the first three columns of the main table (Table 2), where observations are weighted by a tracts share of total establishments in the initial period. Second row reports the same specifications without weights. Heteroscedasticity and Autocorrelation Consistent (HAC) standard errors (Conley (1999)) with a 0.5 km bandwidth reported in parentheses. * $p<0.1$; ** $p<0.05$; *** $p<0.01$.

Table A.6: Gravity Equation: Single Group, Full Estimates

Panel A: Main Regression				
	PPML	PPML	OLS	IV
\ln Commute Cost	$-0.036^{* *}$	$-0.039^{* *}$	-0.035^{*}	$-0.071^{* * *}$
N	(0.017)	(0.016)	(0.020)	(0.024)
Controls X Year FE	710	710	576	576
		X	X	X

Panel B: Alternative Clustering

	PPML	PPML	PPML
In Commute Cost	$-0.039^{* *}$	$-0.039^{* *}$	-0.039^{*}
	(0.016)	(0.018)	(0.022)
N	710	710	710
Clusters	355	38	19
Clustering	O-D	O- $t \&$ D- t	O \& D

Note: Panel A Outcome is the commute shares in levels (PPML) or logs (OLS). Observation is an origin-destination-year cell. Only trips to work during rush hour (hour of departure 4-8am) by individuals 18-55 are included. Data is from 1995 and 2015 mobility surveys. Columns 1-2 estimate PPML models, 3 and 4 OLS and IV models respectively. The last column instruments for travel times in the post-period using the the average change in times across the LCP and tram instruments. Route-level controls are (i) the average number of crimes per year from 2007-2014, (ii) the average log house price in 2012 and (iii) the share of the trip that takes place along a primary road along the least-cost routes between origin and destination. Robust standard errors are reported in parentheses. Panel B repeats the baseline specification (column 2 of Panel A) with alternative levels of clustering (origin-destination pair; origin-year and destination-year; origin and destination). $* p<0.1$; ${ }^{* *} p<0.05$; ${ }^{* * *} p<0.01$

Table A.7: Costs and Benefits

	No Migration	Migration
NPV Increase GDP (mm)	43619.74	211452.29
Capital Costs (mm)	1449.75	1449.75
NPV Operating Costs (mm)	7180.53	7180.53
NPV Total Costs (mm)	8630.28	8630.28
NPV Net Increase GDP (mm)	34989.46	202822.00
\% Net Increase GDP	2.50	14.51

Table A.8: Note: Table shows the costs and net benefits, computing net present values (NPV) over a 50 year time horizon with a 5% interest rate. All numbers are in millions of 2016 USD. The NPV of the increase in GDP is simply the NPV of the change in Bogotás GDP in dollar values. Capital costs are the one-time infrastructure costs of building the network. Total costs are the one-time capital costs associated with building the network combined with the NPV of operating costs. The NPV net increase in GDP nets this out from the gross gains in the first row, while the final row converts this back into a fraction of 2016 GDP.

Table A.9: $\alpha_{H s}$ Across Industries

Industry	$\alpha_{H s}$	Relative HS Wage Bill
Domestic Services	0.160	0.055
Hotels \& Restaurants	0.420	0.376
Social \& Health Services	0.508	0.623
Transport \& Storage	0.515	0.647
Construction	0.552	0.802
Wholesale, Retail, Repair	0.583	0.959
Manufacturing	0.599	1.056
Real Estate	0.601	1.066
Agriculture	0.628	1.254
Arts, Entertainment \& Recreation	0.639	1.342
Other Services	0.701	2.016
Water Treatment and Distribution	0.729	2.441
Public Administration	0.769	3.322
Foreign Orgs	0.773	3.430
Elec, Gas	0.800	4.303
Social \& Health Services	0.801	4.343
Information \& Communication	0.804	4.458
Professional, Scientific and Technical Activities	0.837	6.154
Mining	0.846	6.761
Education	0.854	7.436
Financial Brokerage	0.865	8.455

Note: See Section D. 2 for details.

Table A.10: Employment Data Summary Statistics

Year	N Est.	Mean Emp.	p10	p50	p90
Panel A: Census					
1990	219,812	5.41	1	2	7
2005	625,852	4.93	1	2	6
Panel B: Chamber of Commerce					
2000	34,322				
2015	126,867	2.37	1	1	4

Note: The first column provides the number of establishments in each dataset, column (2) provides the average employment while columns (3)-(5) report percentiles of the firm size distribution. Employment is not reported in the raw 2000 Chamber of Commerce establishment data.

Table A.11: Trip Characteristics in 2015

	Bus	Car	Walk	TM
Share of all trips	0.343	0.137	0.360	0.161
Mean Distance (km)	6.683	6.178	1.526	10.487
Share of (trip purpose)				
To work	0.478	0.150	0.158	0.214
Business trips	0.289	0.333	0.184	0.193
To school	0.292	0.042	0.502	0.164
\quad Private matters	0.267	0.163	0.450	0.120
\quad Shopping	0.149	0.121	0.678	0.052

Note: Table created using data from the 2015 Mobility Survey.

Table A.12: Commute Characteristics over Time

Mode	Bus	Car	Walk	TM
Panel A: Commute Shares				
1995	0.74	0.17	0.09	
2005	0.66	0.17	0.07	0.11
2011	0.46	0.16	0.19	0.19
2015	0.48	0.15	0.16	0.21
Panel B: Commute Speeds (kmh)				
1995	16.31	25.37	8.20	
2005	12.88	15.65	6.53	16.88
2011	10.49	14.02	7.95	13.08
2015	10.37	12.95	6.36	13.04
Panel C: Ownership shares				
1995		0.29		
2005		0.28		
2011		0.25		
2015		0.25		

Note: Only trips to work included in trip-level data (car ownership is at the household level).

Table A.13: Effect of TransMilenio on other Mode Speeds

Outcome: \ln (Speed)	(1)	(2)	(3)	(4)
Panel A: Car Trips				
TM Route X Post	-0.107	-0.060	0.014	0.052
	(0.086)	(0.089)	(0.064)	(0.065)
R^{2}	0.80	0.80	0.80	0.80
N	9,916	9,916	9,916	9,916
Panel B: Bus Trips				
TM Route X Post	$-0.164^{* * *}$	-0.074	-0.064	-0.020
	(0.046)	(0.047)	(0.041)	(0.040)
R^{2}	0.72	0.72	0.72	0.72
N	38,616	38,616	38,616	38,616
Route Measure	Share TM	Share TM	TM $>75 \%$	TM $>75 \%$
Baseline Controls	X	X	X	X
Locality Origin X Post FE	X	X	X	X
Locality Destination X Post FE	X	X	X	X
Log Distance X Post FE		X		X

Note: Observation is a UPZ Origin-UPZ Destination-Year. Outcome is log reported speed from the 1995 and 2015 Mobility Surveys. Share TM is the share of a car trip's least cost route that lies along a TM line. TM $>75 \%$ is a dummy equal to one if the share is greater than 75%. Baseline controls are a gender dummy, hour of departure dummies and age quantile dummies, each interacted with year dummies. Only trips to work included during rush hours included. Panel A includes only trips by car, while panel B includes only those by bus. Standard errors clustered at the origin-destination pair-level. $p<0.1$; ** $p<0.05$; *** $p<0.01$

Table A.14: Relationship between Predicted and Observed Times Over Time

	(1)	(2)	(3)	(4)
\ln (Predicted Time)	$\begin{gathered} 0.705^{*} * * \\ (0.034) \end{gathered}$	$\begin{gathered} 0.511 * * * \\ (0.020) \end{gathered}$	$\begin{gathered} 0.655^{*} * * \\ (0.032) \end{gathered}$	$\begin{gathered} 0.697 * * * \\ (0.023) \end{gathered}$
Post	$\begin{gathered} 0.317 * \\ (0.190) \end{gathered}$	$\begin{gathered} -0.662 * * * \\ (0.126) \end{gathered}$	$\begin{aligned} & 0.151 \\ & (0.216) \end{aligned}$	
\ln (Predicted Time) X Post	$\begin{aligned} & 0.018 \\ & (0.051) \end{aligned}$	$\begin{gathered} 0.187 * * * \\ (0.030) \end{gathered}$	$\begin{aligned} & 0.046 \\ & (0.052) \end{aligned}$	
Car				$\begin{gathered} -0.037 \\ (0.167) \end{gathered}$
TM				$\begin{aligned} & 0.020 \\ & (0.193) \end{aligned}$
\ln (Predicted Time) X Car				$\begin{aligned} & 0.026 \\ & (0.044) \end{aligned}$
\ln (Predicted Time) X TM				$\begin{aligned} & 0.003 \\ & (0.047) \end{aligned}$
R^{2}	0.42	0.34	0.39	0.42
N	2,219	6,671	2,419	5,005
Mode	Car	Bus	TM	All
Post Only				X

Note: Observation is a UPZ Origin-UPZ Destination-Year. Outcome is log reported time from Mobility Survey. Post is a dummy equal to one in 2015 and zero in 1995 (2005 for TM). Trips include journeys to and from work during rush hour (hour of departure between 5 and 8 am, hour of return between 4 and $6 \mathrm{pm})$. Individual observations averaged to the trip-year level, and regressions weighted by number of individual observations in each trip-year-mode. Columns (1)-(3) include observations for pre- and post years and consider only one mode; column (4) includes only observations from the post period and includes all modes. Robust standard errors in parentheses. * $p<0.1$; ** $p<0.05$; *** $p<0.01$

Table A.15: Effect of TransMilenio on Growth in Floorspace

Outcome: Floorspace Growth	(1)	(2)	(3)	(4)
$\Delta \ln$ RCMA	-0.084			
	(0.211)			
$\Delta \ln$ FCMA		-0.106		
		(0.286)		
ln Distance F1			0.014	0.013
			(0.014)	(0.018)
\ln Distance F2			0.016	0.009
			(0.015)	(0.020)
\ln Distance F3			-0.014	-0.019
			(0.026)	(0.027)
ln Distance F1 X Far CBD				0.005
				(0.025)
ln Distance F2 X Far CBD				0.014
				(0.026)
ln Distance F3 X Far CBD				0.002
				(0.039)
N	2,235	2,233	2,205	2,205
R^{2}	0.34	0.34	0.33	0.33

Note: Specification is baseline specification from main table with full controls (column (3)), but outcome is growth in floorspace between 2018 and 2000 using the Davis-Haltiwanger measure. In column 3 the coefficients report the log distance from the closest station in each phase of TransMilenio. Column 4 interacts this with a dummy for whether the tract is above the median distance from the CBD (Far CBD). The full interaction is included. Heteroscedasticity and Autocorrelation Consistent (HAC) standard errors (Conley (1999)) with a 0.5 km bandwidth reported in parentheses. *p<0.1; ** $p<0.05$; *** $p<0.01$

Table A.16: TransMilenio's Effect on Income

	(1)	(2)	(3)
Panel A: Clustered by UPZ X Post			
$\quad \ln ($ RCMA $)$	$0.982^{* * *}$	$0.510^{* *}$	$0.522^{* *}$
	(0.349)	(0.224)	(0.224)
N	87,674	87,673	87,673
R^{2}	0.48	0.56	0.1563
\quad P-val Coef $=1 / \theta$			0.31
Panel B: Clustered by UPZ			
$\quad \ln ($ RCMA $)$	$0.982^{* *}$	0.510^{*}	0.522^{*}
	(0.451)	(0.288)	(0.287)
$\quad N$	87,674	87,673	87,673
$\quad R^{2}$	0.48	0.56	0.1563
\quad P-val Coef = 1/日			0.43
UPZ FE	X	X	X
Region X Year FE	X	X	X
Log Dist CBD X Region X Year FE	X	X	X
Basic Tract Controls X Year FE	X	X	X
Historical Controls X Year FE	X	X	X
Land Market Controls X Year FE	X	X	X
Basic Worker Demographics X Year FE	X	X	X
Education X Year FE		X	X
Hours Worked X Year FE			X

Note: Outcome variable is the log average weekly labor income for full-time, working age (18-65) individuals reporting more than 40 hours worked per week. Data covers 2000-2005 in the pre-period and 2015-2019 in the post period and comes from the ECH and GEIH. Post is a dummy for the post period. RCMA is measured at the UPZ-level using the pre-TM network in the pre-period, and using the 2013 network in the post-period, and at the UPZ-level. Region are dummies for the North, West and South of the city. Controls present are the same as in the main specification (interacted with year dummies), other than basic worker demographics which contain dummies for age (ine 10 year bins) and gender. Columns 2 and 3 contain dummies for each category of highest education level attained. Column 3 contains dummies for hours worked per week in 10 hour bins. Standard errors are clustered by UPZ and period. The p-value tests the null that the coefficient on \log RCMA equals $1 / \theta$ as predicted by the model, with $\theta=3.39$. Standard errors are clustered by UPZ and Post in Panel A, and by UPZ in Panel B. $* p<0.1$; ** $p<0.05 ; * * * p<0.01$.

Table A.17: TransMilenio's Effect on the College Share of Residents

	(1)	(2)
$\Delta \ln R C M A$	0.053^{*}	$0.061^{* *}$
	(0.031)	(0.031)
N	2,106	2,106
R^{2}	0.15	0.18
Init. Coll Share		X

Note: Outcome is the change in the share of college educated residents in a tract between 1993 and 2018. Specification includes all controls from baseline specification, excluding the initial college share in column 1 but including it in column 2 . HAC standard errors are reported with a 500 m bandwidth. * $p<0.1$; ** $p<0.05$; *** $p<0.01$.

Table A.18: Impacts of Both Types of CMA

	(1)	(2)	(3)
Panel A: Residents			
	$\Delta \ln ($ Res Price $)$	$\Delta \ln ($ Res Pop)	
$\Delta \ln R \mathrm{CMA}$	$\begin{aligned} & 0.187 \\ & (0.176) \end{aligned}$	$\underset{(0.388)}{1.048 * * *}$	
$\Delta \operatorname{lnFCMA}$	$\begin{aligned} & 0.307 \\ & (0.242) \end{aligned}$	$\begin{gathered} -1.107 \\ (0.677) \end{gathered}$	
N	2,161	2,228	
R^{2}	0.43	0.37	
Panel B: Firms, Floorspace			
	$\Delta \ln ($ Comm Price $)$	Δ Comm Share	
$\Delta \operatorname{lnFCMA}$	$\begin{aligned} & 0.441 \\ & (0.321) \end{aligned}$	$\underset{(0.101)}{0.553 * * *}$	
$\Delta \ln$ RCMA	$\begin{aligned} & 0.160 \\ & (0.279) \end{aligned}$	$\underset{(0.070)}{-0.352 * * *}$	
N	2,048	2,194	
R^{2}	0.11	0.16	
Panel C: Firms, Employment			
	$\Delta \ln$ (Est, CCB)	$\Delta \ln ($ Emp, Census)	$\Delta \ln ($ Emp Formal, Census)
$\Delta \operatorname{lnFCMA}$	$\begin{aligned} & -1.127 \\ & (0.832) \end{aligned}$	$\begin{gathered} 1.384 \\ (1.179) \end{gathered}$	$\begin{gathered} 2.562 \\ (1.577) \end{gathered}$
$\Delta \ln$ RCMA	$\underset{(0.769)}{3.419 * * *}$	$\begin{aligned} & 0.036 \\ & (0.519) \end{aligned}$	$\begin{aligned} & -0.869 \\ & (0.801) \end{aligned}$
N	2,028	1,943	1,653
R^{2}	0.28	0.23	0.16

Note: Table repeats the baseline specification i.e. column (3) from Table 2 and columns (1) and (3) from Table 4 for census employment, including both the change in RCMA and FCMA in the same regression. Heteroscedasticity and Autocorrelation Consistent (HAC) standard errors (Conley (1999)) with a 0.5 km bandwidth reported in parentheses. * $p<0.1$; ** $p<0.05$; *** $p<0.01$.

Table A.19: Commuting in 1995

	1 ln Speed	lnSpeed	Bus	Bus
Bus	$\begin{gathered} -0.363 * * * \\ (0.020) \end{gathered}$	$\begin{gathered} -0.309 * * * \\ (0.016) \end{gathered}$		
Low-Skill			$\begin{gathered} 0.287 * * * \\ (0.010) \end{gathered}$	$\begin{gathered} 0.163 * * * \\ (0.011) \end{gathered}$
R^{2}	0.06	0.76	0.18	0.47
N	14,945	12,975	18,843	16,461
UPZ O-D FE		X		X
Time of day Controls	X	X	X	X
Demographic Controls	X	X	X	X

Note: Data is from 1995 Mobility Survey. Low-Skill is a dummy for having no post-secondary education. Bus is a dummy for whether bus is used during a commute, relative to the omitted category of car. Time of day controls are dummies for hour of departure, and demographics are log age and a gender dummy. UPZ O-D FE are fixed effects for each upz origin-destination. Only trips to work during rush hour (hour of departure between 5-8am) included. Standard errors clustered at upz origin-destination pair. *p<0.1; ** $p<0.05$; *** $p<0.01$

Table A.20: Aggregate Gravity Equation

	PPML	PPML	OLS	IV
ln Commute Cost	$-0.036^{* *}$ (0.017)	$-0.039^{* *}$ (0.016)	-0.035^{*}	$-0.071^{* * *}$
				(0.020)
N	710	710	576	576
Controls X Year FE		X	X	X

Note: Outcome is the log number of commuters between each origin and destination locality pair in 1995 or 2015. Only trips to work during rush hour (5-8am) by heads of households included. Fixed effects for each origin locality-year, destination locality-year, and origin-destination pair included in each specification. Controls include (i) the average number of crimes per year from 2007-2014, (ii) the average log house price in 2012 and (iii) the share of the trip that takes place along a primary road along the least-cost routes between origin and destination. Columns 1 and 2 run PPML specifications (with column 2 corresponding to the main value from the text), column 3 runs OLS and column 4 runs an IV using the same instrument as column 3 of Table 5 . Standard errors clustered at the origin-destination pair-level are reported. $* p<0.1 ; * * p<0.05$; $* * * p<0.01$

B Additional Figures

Figure A.1: TransMilenio Network and Bogotá
(a) TransMilenio Routes
(b) Population Density in 1993

Figure A.2: TransMilenio Routes: Before and After

Figure A.3: Planned Networks From Previous Studies

Note: Each panel corresponds to the plan by a different consortium of consultants, in the corresponding year. The colored lines are the proposed networks (dashes sometimes indicating different lines), the black dashed line is the limit of the city in that year. Images obtained from https://www.metrodebogota.gov.co/sites/default/files/documentos/Producto\ 15.\ Tomo\ 1.\ Formulación\ y\ caracterización\ de\ las

Figure A.4: Planned Networks From Previous Studies

Note: Graph plots a binscatter (50 bins) the observed change in the share of floorspace used for residential purposes in the data (y-axis) vs the model (x-axis). Both are normalized to have unit mean on the plot. Graph caption also reports results from regression of the change in the share of floorspace used for residential purposes in the data on that from the model.

Figure A.5: College Share in Observed vs Counterfactual Equilibrium with Faster TM

Note: Graph shows share of high-skill residents in tracts in 100 m cells from their nearest TransMilenio station. 1500 m cell includes all tracts 1500 m or more from their nearest station. Red bars show the observed shares in the post-period, blue bars show those from a counterfactual where TransMilenio runs at $35 \mathrm{~km} / \mathrm{h}$.

Figure A.6: Event Study on Floorspace Area

Note: Figure plots event study similar to Figure 3 but using log floorspace area as the outcome.

Figure A.7: Employment in Chamber of Commerce vs Census

Figure A.8: Cadastral vs Reported Property Values

Note: Reported value is the reported purchase price per room as observed in the Multipurpose survey in 2014, for properties bought after 2005 (both the purchase price and year are reported). The cadastral value is the average residential property value per m 2 in the locality in that year. Prices are averaged over the period, and normalized so that each variable has mean one.

Figure A.9: Engel Curves for Car Ownership and Housing

Figure A.10: Computed vs Observed Commute Times

(a) Buses

(b) Cars

(c) TransMilenio

Note: Figures plot the average reported trip time between pairs of UPZs in the Mobility Survey versus the times computed in ArcMap using the pre speeds for 1995 and post speeds for 2015. Only trips to and from work during rush hour included. Marker size is proportional to the number of commuters in each pairwise combination (reported coefficients from regressions weighted by this number).

Figure A.11: Instruments
(a) Raw Land Use Map 1980

(c) LCP Instrument
(b) Cost Raster

(d) Tram Instrument
— Tram Route 1921

- Tram Route 1921 Extended
- TransMilenio System 2006

C Using A Special Case of the Model to Derive Sufficient Statistics for the Impact of Transit Infrastructure on Economic Activity

This section considers a special case of the model where there is one type of worker and firm, no fixed element of expenditure or income and a fixed allocation of floorspace to residential and commercial use. For simplicity, I assume workers make a joint decision over home and workplace but this is later relaxed to have separate decisions as in the main model. This special case is shared by a wider class of quantitative urban models. Section C. 1 sets up and characterizes this simple model from scratch, and shows it admits a reduced form representation where changes in endogenous variables can be written as log-linear functions of changes in CMA. Section C. 2 shows that (i) the change in CMA and elasticities of economic activity to CMA turn out to be sufficient statistics that speak to the impact of transit infrastructure on aggregate outcomes (such as house prices, output and welfare) as well as the reorganization of activity across space. Section C. 5 derives a relationship between first order welfare effects in this class of general equilibrium models and the value of time savings approach typically used to evaluate gains from transit infrastructure. Section C. 8 provides proofs for the results in this section.

C. 1 A Simple Quantitative Urban Model

Setup. I consider a simple quantitative model of a city in the spirit of Ahlfeldt et. al. (2015) and Allen et. al. (2015). There are $i \in I$ locations that differ in their exogenous amenities \bar{u}_{i}, productivities \bar{A}_{i}, residential and commercial floorspace supplies $H_{R i}, H_{F i}$ and the time $t_{i j}$ it takes to commute to any other location. ${ }^{53} \mathrm{~A}$ continuum of workers with mass \bar{L} choose where to live and work and have Cobb-Douglas preferences over a freely-traded numeraire good and housing. Commuting reduces effective labor supply at workplace so that an individual living in i and working in j receives income $w_{j} / d_{i j}$, where $d_{i j}=\exp \left(\kappa t_{i j}\right)$ converts commute times into commute costs. In each location, a representative firm produces a freely traded variety under perfect competition that are aggregated by consumers in CES fashion to form the final numeraire good.

Individuals. Indirect utility across pairs of residential and employment locations (i, j) is given by

$$
\begin{equation*}
U_{i j}(\omega)=\frac{u_{i} w_{j} r_{R i}^{\beta-1}}{d_{i j}} \epsilon_{i j}(\omega), \tag{21}
\end{equation*}
$$

where $\epsilon_{i j}(\omega)$ is an idiosyncratic productivity for worker ω on commute $(i, j), 1-\beta$ is the expenditure share on housing, and u_{i} is the amenity enjoyed by residents who live in i. To allow for the possibility of local spillovers, amenities depend on both exogenous location characteristics \bar{u}_{i} and the number of residents through $u_{i}=\bar{u}_{i} L_{R i}^{\mu_{U}}$. Workers choose the commute pair that maximizes their utility. Assuming these are drawn iid from a Frechet distribution with shape parameter θ yields a simple expression for the number of commuters for each live-work pair

$$
\begin{equation*}
L_{i j}=\bar{L} \bar{U}^{-\theta}\left(\frac{u_{i} w_{j} r_{R i}^{\beta-1}}{d_{i j}}\right)^{\theta}, \tag{22}
\end{equation*}
$$

[^2]where $\bar{U}=\gamma\left[\sum_{i j}\left(u_{i} w_{j} r_{R i}^{\beta-1} / d_{i j}\right)^{\theta}\right]^{1 / \theta}$ is average utility, $\gamma=\Gamma\left(\frac{\theta-1}{\theta}\right)$ and $\Gamma(\cdot)$ is the Gamma function. The supply of residents and workers to each location can be computed by summing these flows over all destinations and origins respectively to get
\[

$$
\begin{align*}
L_{R i} & =\bar{L} \bar{U}^{-\theta}\left(u_{i} r_{R i}^{\beta-1}\right)^{\theta} \Phi_{R i} \tag{23}\\
L_{F j} & =\bar{L} \bar{U}^{-\theta} w_{j}^{\theta} \Phi_{F j} . \tag{24}
\end{align*}
$$
\]

The $\Phi_{R i}$ and $\Phi_{F i}$ terms are what I refer to as commuter market access terms. Residential commuter market access (RCMA) $\Phi_{R i}=\sum_{j}\left(w_{j} / d_{i j}\right)^{\theta}$ reflects residents' access to well-paid jobs from location i. Firm commuter market access (FCMA) $\Phi_{F j}=\sum_{i}\left(u_{i} r_{R i}^{\beta-1} / d_{i j}\right)^{\theta}$ reflects firms' access to workers from location j (i.e. being close to locations with high amenities or low rents). The resident supply curve (23) therefore tells us that more residents will move to locations with high amenities, low house prices, and better access to well-paid jobs through the commuting network. The labor supply curve (24) tells us that firms will attract more workers to locations with high wages and better access to workers via the commuting network.

The supply of effective labor units to a location can be computed by leveraging that, under the Frechet distribution, the average productivity of workers who have chosen (i, j) is inversely related to the share of workers choosing that pair $\bar{\epsilon}_{i j} \propto \pi_{i j}^{-1 / \theta}$ where $\pi_{i j}=L_{i j} / \bar{L}$. Total effective labor supply is simply $\tilde{L}_{F j}=\bar{L} \sum_{i} \pi_{i j}^{\frac{\theta-1}{\theta}} / d_{i j}$, which simplifies to

$$
\begin{equation*}
\tilde{L}_{F j}=\bar{L} \bar{U}^{-(\theta-1)} w_{j}^{\theta-1} \tilde{\Phi}_{F j} \tag{25}
\end{equation*}
$$

where $\tilde{\Phi}_{F j}=\sum_{i}\left(u_{i} r_{R i}^{\beta-1}\right)^{\theta-1} d_{i j}^{-\theta}$ is adjusted FCMA capturing access to effective units of labor.
Consumers spend a constant fraction $1-\beta$ on housing, so that residential floorspace (inverse) demand is given by

$$
\begin{equation*}
r_{R i}=\frac{1-\beta}{H_{R i}} \bar{y}_{i} L_{R i}, \tag{26}
\end{equation*}
$$

where $\bar{y}_{i} \equiv \Phi_{R i}^{1 / \theta} L_{R i}^{-1 / \theta}$ is average income of residents in $i .{ }^{54}$
Firms. The production side of the model assumes an Armington structure with no trade costs. In each location, a representative firm produces a differentiated variety using the Cobb-Douglas technology $Y_{i}=A_{i} \tilde{L}_{F i}^{\alpha} H_{F i}^{1-\alpha}$. As for amenities, I allow for the possibility of productivity externalities of the form $A_{i}=\bar{A}_{i} \tilde{L}_{F i}^{\mu_{A}} .{ }^{55}$ Solving firms' profit maximization problem delivers labor demand

$$
\begin{equation*}
\tilde{L}_{F i}=\frac{1}{\alpha} w_{i}^{\alpha(1-\sigma)-1} A_{i}^{\sigma-1} r_{F i}^{(1-\sigma)(1-\alpha)} E \tag{27}
\end{equation*}
$$

where $E=\sum_{i} \bar{y}_{i} L_{R i}$ is aggregate expenditure and σ is the elasticity of demand across varieties. Firm (inverse)

[^3]demand for commercial floorspace is given by
\[

$$
\begin{equation*}
r_{F i}=\left(\frac{A_{i}^{\sigma-1} w_{i}^{-\alpha(\sigma-1)} P^{\sigma-1} E}{(1-\alpha) H_{F i}}\right)^{\frac{1}{1+(\sigma-1)(1-\alpha)}} \tag{28}
\end{equation*}
$$

\]

Equilibrium. Given model parameters $\left\{\alpha, \beta, \sigma, \theta, \kappa, \mu_{U}, \mu_{A}\right\}$ and location characteristics $\left\{H_{R i}, H_{F i}, t_{i j}, \bar{u}_{i}, \bar{A}_{i}\right\}$, an equilibrium of the model is a vector $\left\{L_{R i}, \tilde{L}_{F j}, w_{j}, r_{R i}, r_{F j}, \bar{U}\right\}$ such that (i) the supply of residents and labor is consistent with worker optimality (23) and (25), (ii) the demand for labor is consistent with firm optimality (27), (iii) demand for floorspace is consistent with firm and worker optimal and equals supply (26) and (28) and (iv) the population of the city \bar{L} is fixed, and welfare \bar{U} is given by $\bar{U}=\gamma\left[\sum_{i j}\left(u_{i} w_{j} r_{R i}^{\beta-1} / d_{i j}\right)^{\theta}\right]^{1 / \theta}{ }^{56}$

C. 2 Sufficient Statistics for Impacts of Transit Infrastructure

The following proposition shows how the model and related extensions admit a simple reduced form and sufficient statistics approach to quantify the impacts of changes in transit infrastructure.

Proposition 1. Consider a change in commute costs from \mathbf{d} to \mathbf{d}^{\prime}, and let $\hat{x} \equiv x^{\prime} / x$ denote relative changes in a variable between the pre- and post-period. Then

Part 1: Reduced Form. The model yields a reduced form where endogenous variables can be written as log-linear functions of CMA as

$$
\begin{aligned}
\ln \hat{\mathbf{y}}_{i} & =\boldsymbol{\beta}_{R} \ln \hat{\Phi}_{R i}+\tilde{\boldsymbol{\beta}}_{1, F} \ln \hat{\Phi}_{F i}+\tilde{\boldsymbol{\beta}}_{2, F} \ln \hat{\tilde{\Phi}}_{F i}+\mathbf{e}_{i} \\
& \approx \boldsymbol{\beta}_{R} \ln \hat{\Phi}_{R i}+\boldsymbol{\beta}_{F} \ln \hat{\Phi}_{F i}+\mathbf{e}_{i}
\end{aligned}
$$

where $\mathbf{y}_{i}=\left[L_{R i}, r_{R i}, r_{F i}, L_{F i}\right]$ and \mathbf{e}_{i} is a vector of structural residuals. $\boldsymbol{\beta}_{F}$ and $\boldsymbol{\beta}_{R}$ have zero elements in the first and last two entries respectively, so this is a system of 4 univariate regressions yielding 4 coefficients $\beta_{L_{R}}, \beta_{r_{R}}, \beta_{r_{F}}, \beta_{L_{F}}$. Unique (to-scale) values of the CMA terms $\Phi_{R i}, \Phi_{F i}$ can be computed given data $\left\{L_{R i}, L_{F i}, d_{i j}\right\}$ and the commuting elasticity θ. While the first line holds exactly (given the values for $\hat{\Phi}_{R i}, \hat{\Phi}_{F i}, \hat{\tilde{\Phi}}_{F i}$ which also depend on $\hat{L}_{R i}, \hat{L}_{F i}$), the second lines uses the first-order approximation $\ln \hat{\tilde{\Phi}}_{F i} \approx \frac{\theta-1}{\theta} \ln \Phi_{F i}$ around $d_{i j}^{-\theta}=0$.

Part 2: Relative Impacts of Transit Infrastructure. Assuming that exogenous, location-specific characteristics are unchanged by the infrastructure, relative changes in endogenous variables $\hat{\hat{\mathbf{y}}}_{i} \equiv \hat{\mathbf{y}}_{i} /\left(\prod_{r} \hat{\mathbf{y}}_{i}\right)^{1 / I}$ can be computed using (i) estimates of $\beta_{L_{R}}, \beta_{r_{R}}, \beta_{r_{F}}, \beta_{L_{F}}, \theta$, (ii) data on the initial distribution of economic activity $\left\{L_{R i}, L_{F i}, d_{i j}\right\}$ and (iii) data on the change in commute costs $\left\{\hat{d}_{i j}\right\}$.

Part 3: Level Impacts of Transit Infrastructure. Level changes in endogenous variables $\hat{\mathbf{y}}_{i}$ and endogenous constants $\hat{\bar{L}}, \hat{\bar{U}}$ can be computed from the relative changes obtained in part 2 with (i) an assumption on population mobility between the city and the rest of the country, and (ii) values for σ, β.

Part 4: Isomorphisms. Parts 1 and 2 apply to a more general class of models which feature (i) a gravity equation for commute flows and (ii) an equilibrium that can be written as a system of K equations in K endogenous variables $\left\{y_{1 i}, \ldots, y_{k i}\right\}_{i=1}^{I}$

[^4]of the form
$$
\prod_{k=1}^{K} y_{k i}^{\alpha_{k h}}=\lambda_{h} \Phi_{R i}^{b_{h}^{R}} \Phi_{F i}^{b_{h}^{F}} e_{i h} \quad \text { for } h=1, \ldots, K
$$

These models will yield the same counterfactual changes in outcomes (relative to city-wide averages) as those from the baseline model, given estimates of $\beta_{R}, \beta_{F}, \theta$. This class includes models with endogenous firm location choice, Eaton and Kortum production, capital in the production function, endogenous housing supply, leisure, preference rather than productivity shocks, and alternative residential and employment supply elasticities and timing assumptions. However, the overall level of changes and changes in endogenous constants will depend on (a subset of) the particular structural parameters of the model $\left\{\left\{\alpha_{k h}\right\}_{k}, b_{h}^{R}, b_{h}^{F}\right\}_{h}$, and are not determined by the reduced form elasticities alone.

The implications of these results are now discussed in turn.

Reduced Form Representation. The first part of Proposition 1 shows that the transit network only matters for equilibrium outcomes through the two CMA variables. In fact, the change in the entire distribution of economic activity across the city between two periods depends only on the change in CMA as well as a structural residual that reflects changing location fundamentals (productivities, amenities and floorspace supplies). ${ }^{57}$ This system reduces to a system of 4 univariate regressions, where residential outcomes depend on RCMA and commercial outcomes depend on FCMA.

These CMA terms can be easily recovered using data on residential populations, employment, commute costs and the commuting elasticity θ. This ensures estimation of the reduced form is straightforward, even if CMA is not directly observed in the data. The proof of Proposition 1 shows that the CMA terms are the unique to-scale solution to the system given in (18) and (19) in the paper. It also discusses the approximation used collapse the reduced form that contains three CMA terms $\Phi_{R i}, \Phi_{F i}, \tilde{\Phi}_{F i}$ into one with just $\Phi_{R i}, \Phi_{F i}$. This choice is made both for parsimony and empirical feasibility (the correlation between $\Phi_{F i}$ and $\tilde{\Phi}_{F i}$ is 0.98 in the data). The unapproximated reduced form is used to conduct counterfactuals, with a simple adjustment made to the coefficients from the approximated reduced form to map them to the coefficients from the unapproximated system (see proof in Appendix C.8.1 for details).

Counterfactual Impacts of Transit Infrastructure. Part 2 of Proposition 1 shows that relative changes in endogenous variables across the city in response to a change in commute costs can be computed using data on the initial distribution $L_{R i}, L_{F i}, d_{i j}$, the change in commute costs $\hat{d}_{i j}$, the commuting elasticity θ, and the reduced form parameters $\beta_{L_{R}}, \beta_{r_{R}}, \beta_{r_{F}}, \beta_{L_{F}}$. In other words, these data and parameters are sufficient statistics for the change in economic activity across the city in response to changes in transit infrastructure. As shown in the proof, the elasticities and the change in CMA are the sufficient statistics; the data on initial economic activity and changes in commute costs are necessary to compute the change in CMA.

Part 3 shows that computing both the level change in endogenous variables as well as the change in equilibrium constants requires slightly more structure. These require an assumption on population mobility into the city from the rest of the country, and values for two parameters σ and β that cannot be estimated from the reduced form. These must be specified in some other way by the researcher, for example by calibrating to external values or aggregate moments.

[^5]Part 4 shows that some of these results apply more generally to a wider class of models which feature a gravity equation for commute flows and a log-linear equilibrium representation. Despite having different underlying structural parameters, these models yield the same log-linear reduced form. Since part 2 requires only values of these reduced form elasticities to compute relative changes in activity across the city in response to changes in the transit network, they yield the same (relative) counterfactual impacts as the baseline model. This result is particularly useful because the researcher does not need to take a stand on which particular modeling assumption is true; each will yield the same counterfactual impact on relative outcomes as the baseline model conditional on the reduced form estimates $\boldsymbol{\beta}_{R}, \boldsymbol{\beta}_{F}$. Where the modeling assumptions do come into play is in determining the overall level of changes and aggregate effects (such as welfare). As the example in part 3 shows, this depends on the underlying structural parameters of the model. However if the researcher is ready to take a stand on the value of those parameters in their model, then these aggregate impacts can be computed using the procedure shown in the proof of part 3 and the values of the particular structural parameters of that model.

C. 3 Estimating Demand for Travel Modes

Standard results on GEV distributions imply that the choice probabilities are

$$
\begin{aligned}
\pi_{m \mid i j a} & =\pi_{k \mid i j a} \times \pi_{m \mid i j k a} \\
& =\frac{\left(\sum_{n \in \mathcal{B}_{k}} \exp \left(b_{n}-\frac{\kappa}{\lambda_{k}} t_{i j n}\right)\right)^{\lambda_{k}}}{\sum_{k^{\prime}}\left(\sum_{n \in \mathcal{B}_{k^{\prime}}} \exp \left(b_{n}-\frac{\kappa}{\lambda_{k^{\prime}}} t_{i j n}\right)\right)^{\lambda_{k^{\prime}}}} \times \frac{\exp \left(b_{m}-\frac{\kappa}{\lambda_{k}} t_{i j m}\right)}{\sum_{n \in \mathcal{B}_{k}} \exp \left(b_{n}-\frac{\kappa}{\lambda_{k}} t_{i j n}\right)}
\end{aligned}
$$

where $b_{m} \equiv-\tilde{b}_{m} / \lambda_{k}$. That is, the probability a worker chooses mode m can be decomposed into the probability they choose the nest containing m and the probability they choose the mode from the options available in that nest. This is estimated via MLE as described in the main text.

C. 4 Estimating the Commute Elasticity θ

Taking logs and first differences of the expression for commute flows (22) yields a gravity equation relating the change in commute flows to changes in commute times

$$
\begin{equation*}
\ln L_{i j t}=\alpha_{i j}+\gamma_{i t}+\delta_{j t}-\theta \kappa t_{i j t}+\varepsilon_{i j t}, \tag{29}
\end{equation*}
$$

where $\alpha_{i j}, \gamma_{i t}$ and $\delta_{j t}$ are origin-destination, origin-year and destination-year fixed effects. While other estimation approaches typically leverage cross- sectional variation, this paper uses the change in commute times induced by TransMilenio to difference out time-invariant characteristics potentially correlated with commute times. Changes in origin- or destination- specific unobservables-such as amenities and productivities-are absorbed in the fixed effects.

Commute times $t_{i j t}$ are formed using the same mode choice model as in the general model, but incorporating car ownership according to an exogenous probability rather than an endogenous decision. Workers become car owners according to a Bernoulli distribution with parameter $\rho_{c a r}$. Expected utility conditional on car ownership is

$$
U_{i j m \mid a}(\omega)=\frac{u_{i} w_{j} r_{R i}^{\beta-1} \epsilon_{i j}(\omega)}{\exp \left(\kappa t_{i j m}+v_{i j m}(\omega)\right)} .
$$

Expected utility prior to drawing the mode-specific preference shocks shocks is given by

$$
\begin{aligned}
E_{a}\left[\max _{m}\left\{U_{i j m \mid a}(\omega)\right\}\right] & =u_{i} w_{j} r_{R i}^{\beta-1} \epsilon_{i j}(\omega) \times\left[\rho_{c a r} E\left[\max _{m \in \mathcal{M}_{1}}\left\{1 / d_{i j m}(\omega)\right\}\right]+\left(1-\rho_{c a r}\right) E\left[\max _{m \in \mathcal{M}_{0}}\left\{1 / d_{i j m}(\omega)\right\}\right]\right] \\
& =\frac{u_{i} w_{j} r_{R i}^{\beta-1} \epsilon_{i j}(\omega)}{\exp \left(\kappa \bar{t}_{i j}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
t_{i j} & =-\frac{1}{\kappa} \ln \left[\rho_{c a r} \exp \left(-\kappa \bar{t}_{i j 1}\right)+\left(1-\rho_{c a r}\right) \exp \left(-\kappa \bar{t}_{i j 0}\right)\right] \\
\text { where } \bar{t}_{i j 0} & =-\frac{\lambda}{\kappa} \ln \sum_{m \in \mathcal{B}_{\text {Public }}} \exp \left(b_{m}-\frac{\kappa}{\lambda} t_{i j m}\right) \\
\bar{t}_{i j 1} & =-\frac{1}{\kappa} \ln \left(\exp \left(b_{c a r}-\kappa t_{i j \text { Car }}\right)+\exp \left(\kappa \bar{t}_{i j 0}\right)\right)
\end{aligned}
$$

The expressions $\bar{t}_{i j 0}, \bar{t}_{i j 1}$ are exactly the same car-ownership-specific commute time indices as in the baseline model. The only difference is that they are averaged using the parameter $\rho_{c a r}$ which reflects the probability of owning a car. I then compute $\bar{t}_{i j t}$ for different years, where variation over time is induced by the changes in the TransMilenio network. I set $\rho_{c a r}=0.181$ equal to the share of car owners in 2015.

The estimates for (29) are presented in Table A.6. Columns 1 and 2 run PPML regressions to account for the presence of zeros in the data. Controlling for route observables interacted with year fixed effects implies a value of $\theta=3.398$ reported in Table 1. Column 3 runs the same regression via OLS which do not account for pairs with zero commute flows, finding similar but mildly smaller estimates. The last column instruments for the change in travel times using the instrument from Section 5 for travel times in the post-period, delivering a larger estimate.

C. 5 First Order vs Equilibrium Effects

The standard approach to evaluate the gains from transit infrastructure is based on the Value of Travel Time Savings (e.g. Small and Verhoef 2007), in which its benefits are given by minutes saved times the value of time. The following proposition shows that under certain conditions, this is precisely the first order welfare impact from a change in infrastructure in the full general equilibrium model.

Proposition 2. In a version of the baseline model with (i) no amenity or productivity spillovers, (ii) preference shocks over residential locations, (iii) workers owning an equal share of all floorspace and (iv) a labor income tax $1 /(1+\theta)$ redistributed lump sum, the elasticity of welfare to a change in commute costs is

$$
\begin{equation*}
d \ln \bar{U}=-\alpha \beta \kappa \sum_{i j} \frac{w_{i j} L_{i j}}{\sum_{r s} w_{r s} L_{r s}} d t_{i j} \tag{30}
\end{equation*}
$$

where $w_{i j}$ is average labor income of commuters along pair (i, j).

The proof of the proposition first establishes that under these conditions the equilibrium is efficient. An application of the envelope theorem then shows that-to a first order-only the time savings from new infrastructure matter for welfare. This is simply proportional to a labor income-weighted average of the commute time reductions, scaled by κ and $\alpha \beta$. The former converts commute times to commute costs, while the latter reflects that a share of
the gains go to floorspace owners rather than directly to workers. ${ }^{58}$ Lastly, as explained in the proof of the proposition, technical reasons require the restrictions (ii)-(iv) to be imposed to derive this result. However, simulations of small shocks in the model from Section C. 1 with only condition (i) imposed confirm this expression correctly captures the first order welfare effects in that model as well.

C. 6 Examples of Isomorphic Models in Proposition 1

Sorting of Individual Entrepreneurs. Consider a production side where each variety is produced by a monopolist who can choose where to locate in the city. The entrepreneur has the same Cobb-Douglas production function over labor and commercial floorspace, so profits are a fraction $1 / \sigma$ of sales. Entrepreneurs have idiosyncratic preferences for producing in each block so that the return from locating in j is given by

$$
\begin{aligned}
V_{j}(\omega) & =\pi_{j} \epsilon_{j}(\omega) \\
\text { where } \pi_{j} & =\bar{\sigma}\left(w_{j}^{\alpha} r_{F j}^{1-\alpha} / A_{j}\right)^{1-\sigma} E
\end{aligned}
$$

where $\bar{\sigma} \equiv \sigma^{-\sigma}(\sigma-1)^{-(\sigma-1)}$ and $\epsilon_{j}(\omega)$ is the preference of entrepreneur ω in to produce in j. If these preferences are drawn from a Frechet distribution with shape $\theta_{F}>1$, then (normalizing the mass of firms to 1) the number of firms producing in j is

$$
N_{j}=\frac{\left(A_{j} / w_{j}^{\alpha} r_{F j}^{1-\alpha}\right)^{\theta_{F}(\sigma-1)}}{\sum_{s}\left(A_{s} / w_{s}^{\alpha} r_{F s}^{1-\alpha}\right)^{\theta_{F}(\sigma-1)}}
$$

The wage bill is a fraction $\alpha \frac{\sigma-1}{\sigma}$ of sales so $w_{j} \ell_{j}=\alpha(\sigma /(\sigma-1))^{-\sigma}\left(w_{j}^{\alpha} r_{F j}^{1-\alpha} / A_{j}\right)^{1-\sigma} E$. Since total labor demand is simply $\tilde{L}_{F j}=N_{j} \ell_{j}$, we find that

$$
\tilde{L}_{F j}=\alpha(\sigma /(\sigma-1))^{-\sigma} \bar{U}_{F}^{-1 / \theta_{F}(\sigma-1)} \times A_{j}^{\left(1+\theta_{F}\right)(\sigma-1)} w_{j}^{-\left(1+\left(1+\theta_{F}\right) \alpha(\sigma-1)\right)} r_{F i}^{-(\sigma-1)(1-\alpha)\left(1+\theta_{F}\right)} E
$$

where $\bar{U}_{F}=\left[\sum_{s}\left(A_{s} / w_{s}^{\alpha} r_{F s}^{1-\alpha}\right)^{\theta_{F}(\sigma-1)}\right]^{1 / \theta_{F}(\sigma-1)}$. Using the same logic as for labor, demand for commercial floorspace is

$$
H_{F j}=(1-\alpha)(\sigma /(\sigma-1))^{-\sigma} \bar{U}_{F}^{-1 / \theta_{F}(\sigma-1)} \times A_{j}^{\left(1+\theta_{F}\right)(\sigma-1)} w_{j}^{-\left(1+\theta_{F}\right) \alpha(\sigma-1)} r_{F i}^{-(\sigma-1)(1-\alpha)\left(1+\theta_{F}\right)-1} E .
$$

Since floorspace is fixed, this is the commercial floorspace clearing condition.
Only the labor demand and commercial floorspace market clearing conditions have changed. Since they have the same log-linear parametric structure, the same reduced form representation as in the baseline model will hold. To see how, the equilibrium system becomes

$$
\begin{aligned}
L_{R i} & =\bar{L} \bar{U}^{-\theta}\left(u_{i} r_{R i}^{\beta-1}\right)^{\theta} \Phi_{R i} \\
L_{F j} & =\bar{L} \bar{U}^{-\theta} w_{j}^{\theta} \Phi_{F j} \\
\tilde{L}_{F j} & =\left(\bar{L} \bar{U}^{-\theta}\right)^{\frac{\theta-1}{\theta}} w_{j}^{\theta-1} \tilde{\Phi}_{F j} \\
\tilde{L}_{F j} & =\alpha(\sigma /(\sigma-1))^{-\sigma} \bar{U}_{F}^{-1 / \theta_{F}(\sigma-1)} w_{j}^{\left(1+\theta_{F}\right) \alpha(1-\sigma)-1} A_{j}^{\left(1+\theta_{F}\right)(\sigma-1)} r_{F i}^{(1-\alpha)(1-\sigma)\left(1+\theta_{F}\right)} E \\
r_{R i} & =\frac{1-\beta}{H_{R i}} \Phi_{R i}^{1 / \theta} L_{R i}^{\frac{\theta-1}{\theta}}
\end{aligned}
$$

[^6]$$
r_{F i}=\left((1-\alpha)(\sigma /(\sigma-1))^{-\sigma} \bar{U}_{F}^{-1 / \theta_{F}(\sigma-1)} \frac{A_{j}^{\left(1+\theta_{F}\right)(\sigma-1)} w_{j}^{-\left(1+\theta_{F}\right) \alpha(\sigma-1)} E}{H_{F i}}\right)^{\frac{1}{1+(\sigma-1)(1-\alpha)\left(1+\theta_{F}\right)}}
$$
where the CMA definitions are unchanged. Using the third line to substitute out for wages and ignoring the second line (which pins down $L_{F j}$ given the other variables of the model), we arrive at a system of 4 equations in $\left\{L_{R i}, \tilde{L}_{F i}, r_{R i}, r_{F i}\right\}$ given $\left\{\Phi_{R i}, \tilde{\Phi}_{F i}\right\}$
\[

$$
\begin{aligned}
L_{R i}^{1-\theta \mu_{U}} r_{R i}^{\theta(1-\beta)} & =\lambda_{1} \Phi_{R i} \bar{u}_{i}^{\theta} \\
L_{R i}^{-\frac{\theta-1}{\theta}} r_{r i} & =\lambda_{2} \Phi_{R i}^{1 / \theta} H_{R i}^{-1} \\
r_{F i}^{1+(\sigma-1)(1-\alpha)\left(1+\theta_{F}\right)} \tilde{L}_{F i}^{(\sigma-1)\left(\frac{\alpha-\mu_{A}(\theta-1)}{\theta-1}\right)\left(1+\theta_{F}\right)} & =\lambda_{3} \frac{\bar{A}_{i}^{(\sigma-1)\left(1+\theta_{F}\right)} \tilde{\Phi}_{F j}^{\frac{\alpha(\sigma-1)}{\theta-1}\left(1+\theta_{F}\right)}}{H_{F i}} \\
r_{F i}^{(\sigma-1)(1-\alpha)\left(1+\theta_{F}\right)} \tilde{L}_{F j}^{\frac{\theta+\left(1+\theta_{F}\right)(\sigma-1)\left[\alpha-\mu_{U}(\theta-1)\right]}{\theta-1}} & =\lambda_{4} \bar{A}_{j}^{\left(1+\theta_{F}\right)(\sigma-1)} \tilde{\Phi}_{F i}^{\frac{1+\left(1+\theta_{F}\right) \alpha(\sigma-1)}{\theta-1}}
\end{aligned}
$$
\]

where the (endogenous) constants are given by $\lambda_{1} \equiv \bar{L} \bar{U}^{-\theta}, \lambda_{2}=1-\beta, \lambda_{3} \equiv(1-\alpha)(\sigma /(\sigma-1))^{-\sigma} \bar{U}_{F}^{-1 / \theta_{F}(\sigma-1)}\left(\bar{L} \bar{U}^{-\theta}\right)^{-\frac{\alpha(\sigma-1)(1+\theta}{\theta}}$ and $\lambda_{4} \equiv \alpha(\sigma /(\sigma-1))^{-\sigma} \bar{U}_{F}^{-1 / \theta_{F}(\sigma-1)}\left(\bar{L} \bar{U}^{-\theta}\right)^{-\frac{1+\left(1+\theta_{F}\right) \alpha(\sigma-1)}{\theta}} E$. This is of the same parametric form as the system (51), and thus admits the same reduced form as the baseline model. To see this explicitly for this example, write the system in changes and take logs to get

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1-\theta \mu_{U} & \theta(1-\beta) & 0 & 0 \\
-\frac{\theta-1}{\theta} & 1 & 0 & 0 \\
0 & 0 & 1+(\sigma-1)(1-\alpha)\left(1+\theta_{F}\right) & (\sigma-1)\left(\frac{\alpha-\mu_{A}(\theta-1)}{\theta-1}\right)\left(1+\theta_{F}\right) \\
0 & 0 & (\sigma-1)(1-\alpha)\left(1+\theta_{F}\right) & \frac{\theta+\left(1+\theta_{F}\right)(\sigma-1)\left[\alpha-\mu_{U}(\theta-1)\right]}{\theta-1}
\end{array}\right]\left[\begin{array}{c}
\ln \hat{L}_{R i} \\
\ln \hat{r}_{R i} \\
\ln \hat{r}_{F i} \\
\ln \hat{\tilde{L}}_{F i}
\end{array}\right]} \\
& =\left[\begin{array}{l}
1 \\
\frac{1}{\theta} \\
0 \\
0
\end{array}\right] \ln \hat{\Phi}_{R i}+\left[\begin{array}{c}
0 \\
0 \\
\frac{\alpha(\sigma-1)\left(1+\theta_{F}\right)}{\theta-1} \\
\frac{1+\left(1+\theta_{F}\right) \alpha(\sigma-1)}{\theta-1}
\end{array}\right] \ln \hat{\tilde{\Phi}}_{F i}+\left[\begin{array}{c}
\theta \ln \hat{\vec{u}}_{i}+\ln \hat{\bar{L}} \hat{\bar{U}}-\theta \\
-\ln \hat{H}_{R i} \\
(\sigma-1)\left(1+\theta_{F}\right) \ln \hat{\bar{A}}_{i}-\ln \hat{H}_{F i}-\frac{\alpha(\sigma-1)\left(1+\theta_{F}\right)}{\theta} \ln \hat{\bar{L}}^{2} \hat{\bar{U}}^{-\theta}+\ln \hat{E}-\frac{1}{\theta_{F}(\sigma-1)} \ln \hat{\bar{U}}_{F} \\
(\sigma-1)\left(1+\hat{\theta}_{F}\right) \ln \hat{\bar{A}}_{i}-\frac{1+\left(1+\theta_{F}\right) \alpha(\sigma-1)}{\theta} \ln \hat{\bar{L}} \hat{\bar{U}}^{-\theta}+\ln \hat{E}-\frac{1}{\theta_{F}(\sigma-1)} \ln \hat{U}_{F}
\end{array}\right]
\end{aligned}
$$

By the results of part (iv), the relative impacts of changes in the commuting network are the same in this model as the baseline model given estimates of θ and the reduced form elasticities. (Note the reduced form elasticities have the same parametric form in this model as the baseline, since $\boldsymbol{\beta}_{F}, \boldsymbol{\beta}_{R}$ have zero entries in the first and last two entries respectively.) The level effects would differ, however, since these depend on the structural parameters that appear in the A matrix and the error term \mathbf{e}.

Endogenous Housing Supply. Consider an extension of the model in which housing floorspace for each type of floorspace is produced using land T_{i} and capital K_{i} according to a Cobb-Douglas production function $H_{i}=$ $T_{i}^{1-\eta} K_{i}^{\eta}$. Capital is freely traded across the city with price p_{K}. Each unit of land is owned by an atomistic developer who chooses $h_{i}=k_{i}^{\eta}$ units of housing to construct per unit of land, where k_{i} units of capital are used per unit of land. Profit maximization by developers yields a density of development $h_{i}=\left(\eta r_{i} / p_{K}\right)^{1 /(1-\eta)}$. Total housing supply is therefore

$$
H_{R i}=T_{i}\left(\frac{\eta r_{R i}}{p_{K}}\right)^{\frac{1}{1-\eta}} \quad \text { and } \quad H_{F i}=T_{i}\left(\frac{\eta r_{F i}}{p_{K}}\right)^{\frac{1}{1-\eta}}
$$

All that changes in the model is that $H_{R i}, H_{F i}$ are now endogenous since they depend on floorspace prices.

Adding these equations into the system and rearranging yields

$$
\begin{aligned}
L_{R i}^{1-\theta \mu_{U}} r_{R i}^{\theta(1-\beta)} & =\bar{L} \bar{U}^{-\theta} \Phi_{R i} \bar{u}_{i}^{\theta} \\
L_{R i}^{-\frac{\theta-1}{\theta}} r_{R i}^{1+\frac{1}{1-\eta}} & =(1-\beta)\left(p_{K} / \eta\right)^{\frac{1}{1-\eta}} \Phi_{R i}^{1 / \theta} T_{i}^{-1} \\
r_{F i}^{1+(\sigma-1)(1-\alpha)+\frac{1}{1-\eta} \tilde{L}_{F i}^{\frac{(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta-1}}} & =(1-\alpha)\left(p_{K} / \eta\right)^{\frac{1}{1-\eta}} \bar{A}_{i}^{\sigma-1}\left(\left(\bar{L} \bar{U}^{-(\theta-1)}\right) \tilde{\Phi}_{F j}\right)^{\frac{\alpha(\sigma-1)}{\theta-1}} T_{i}^{-1} E \\
r_{F i}^{(\sigma-1)(1-\alpha)} \tilde{L}_{F i} \frac{\theta+(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta-1} & =\alpha\left(\left(\bar{L} \bar{U}^{-(\theta-1)}\right) \tilde{\Phi}_{F j}\right)^{\frac{1+\alpha(\sigma-1)}{\theta-1}} \bar{A}_{i}^{\sigma-1} E
\end{aligned}
$$

This is of the same parametric form as the system (51). Writing the system in log changes yields

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1-\theta \mu_{U} & \theta(1-\beta) & 0 & 0 \\
-\frac{\theta-1}{\theta} & 1+\frac{1}{1-\eta} & 0 & 0 \\
0 & 0 & 1+(\sigma-1)(1-\alpha)+\frac{1}{1-\eta} & \frac{(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta-1} \\
0 & 0 & (\sigma-1)(1-\alpha) & \frac{\theta+(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta-1}
\end{array}\right]\left[\begin{array}{l}
\ln \hat{L}_{R i} \\
\ln \hat{r}_{R i} \\
\ln \hat{r}_{F i} \\
\ln \hat{\tilde{L}}_{F i}
\end{array}\right]} \\
& =\left[\begin{array}{l}
1 \\
\frac{1}{\theta} \\
0 \\
0
\end{array}\right] \ln \hat{\Phi}_{R i}+\left[\begin{array}{c}
0 \\
0 \\
\frac{\alpha(\sigma-1)}{\theta-1} \\
\frac{1+\alpha(\sigma-1)}{\theta-1}
\end{array}\right] \ln \hat{\tilde{\Phi}}_{F i}+\left[\begin{array}{c}
\theta \ln \hat{\bar{u}}_{i}+\ln \hat{\bar{L}}-\theta \ln \hat{\bar{U}} \\
-\ln \hat{T}_{i} \\
(\sigma-1) \ln \hat{\bar{A}}_{i}-\ln \hat{H}_{F i}+\frac{\alpha(\sigma-1)}{\theta-1}(\ln \hat{L}-(\theta-1) \ln \hat{\bar{U}})+\ln \hat{E} \\
(\sigma-1) \ln \hat{\bar{A}}_{i}+\frac{1+\alpha(\sigma-1)}{\theta-1}(\ln \hat{L}-(\theta-1) \ln \hat{\bar{U}})+\ln \hat{E}
\end{array}\right]
\end{aligned}
$$

assuming the cost of capital p_{K} is unaffected by the system. This model admits exactly the same parametric form of regression equations as the baseline model, and so the results of part 4 apply. Note this model allows the share of floorspace used for commercial purposes in a census tract to respond to a change in commute costs. This would occur if the price of commercial floorspace changed relative to that of residential floorspace, since $\hat{\vartheta}_{i}=\frac{\hat{r}_{F i}^{1 /(1-\eta)}}{\vartheta_{i} \hat{r}_{F i}^{1 /(1-\eta)}+\left(1-\vartheta_{i}\right) \hat{r}_{R i}^{1 /(1-\eta)}}$ where $\vartheta_{i} \equiv H_{F i} /\left(H_{F i}+H_{R i}\right)$ is the share of floorspace allocated to commercial use in the initial equilibrium.

Eaton and Kortum. In the Eaton and Kortum (2002) setup, there is a continuum of goods $\omega \in[0,1]$. Each location has idiosyncratic draw for each good from a Frechet distribution with location parameter $A_{j}>0$ and shape $\theta_{F}>1$. There is perfect competition so that $p_{j}(\omega)=w_{j} / z_{j}(\omega)$. Goods market clearing implies that sales are given by

$$
X_{j}=\sum_{i} \frac{\left(w_{j}^{\alpha} r_{F j}^{1-\alpha} / A_{j}\right)^{-\theta_{F}}}{\sum_{s}\left(w_{s}^{\alpha} r_{F s}^{1-\alpha} / A_{s}\right)^{-\theta_{F}}} E_{i}=\left(w_{j}^{\alpha} r_{F j}^{1-\alpha}\right)^{-\theta_{F}} A_{j}^{\theta_{F}} P^{\theta_{F}} E
$$

This yields the same system of equations as in the baseline model, with $\sigma-1$ replaced with θ_{F}, and thus the results of part 4 apply.

Capital. Consider an extension of the model in which firms can invest in capital to respond to changes in transit networks. Suppose firms use the production function $Y_{i}=A_{i} \tilde{L}_{F i}^{\alpha_{L}} H_{F i}^{\alpha_{H}} K_{F i}^{\alpha_{K}}$. Capital is freely traded across the city and available at price p_{K}. Profit maximization implies firms spend constant fractions of sales on each factor, with factor demands given by

$$
\begin{aligned}
w_{i} \tilde{L}_{F i} & =\frac{1}{\alpha_{L}}\left(\frac{w_{i}^{\alpha_{L}} r_{R i}^{\alpha_{H}} p_{K}^{\alpha_{K}}}{A_{i}}\right)^{1-\sigma} E \\
r_{F i} H_{F i} & =\frac{1}{\alpha_{H}}\left(\frac{w_{i}^{\alpha_{L}} r_{R i}^{\alpha_{H}} p_{K}^{\alpha_{K}}}{A_{i}}\right)^{1-\sigma} E \\
p_{K} K_{F i} & =\frac{1}{\alpha_{K}}\left(\frac{w_{i}^{\alpha_{L}} r_{R i}^{\alpha_{H}} p_{K}^{\alpha_{K}}}{A_{i}}\right)^{1-\sigma} E .
\end{aligned}
$$

We assume Colombia is a small open economy so that the price of capital is pinned down in international capital markets, i.e. p_{K} is a constant exogenous to the model. Only the condition for labor demand and commercial floorspace market clearing change. The equilibrium system is given by a system of $6 \times I$ equations in as many unknowns (given $\left\{\Phi_{R i}, \Phi_{F i}, \tilde{\Phi}_{F i}\right\}$, themselves auxiliary variables of these same unknowns in the same system as the baseline model)

$$
\begin{aligned}
& L_{R i}=\bar{L} \bar{U}^{-\theta}\left(u_{i} r_{R i}^{\beta-1}\right)^{\theta} \Phi_{R i} \\
& L_{F j}=\bar{L} \bar{U}^{-\theta} w_{j}^{\theta} \Phi_{F j} \\
& \tilde{L}_{F j}=\left(\bar{L} \bar{U}^{-\theta}\right)^{\frac{\theta-1}{\theta}} w_{j}^{\theta-1} \tilde{\Phi}_{F j} \\
& \tilde{L}_{F i}=\frac{1}{\alpha_{L}} w_{i}^{\alpha_{L}(1-\sigma)-1} A_{i}^{\sigma-1} r_{F i}^{\alpha_{H}(1-\sigma)} p_{K}^{\alpha_{K}(1-\sigma)} E \\
& r_{R i}=\frac{1-\beta}{H_{R i}} \Phi_{R i}^{1 / \theta} L_{R i}^{\frac{\theta-1}{\theta}} \\
& r_{F i}=\left(\frac{A_{i}^{\sigma-1} w_{i}^{-\alpha_{L}(\sigma-1)} p_{K}^{\alpha_{K}(1-\sigma)} E}{\alpha_{H} H_{F i}}\right)^{\frac{1}{1+\alpha_{H}(\sigma-1)}}
\end{aligned}
$$

Note that with these solved for, capital demand can be recovered using the demand equation above. This is of the same parametric form as the system (51). Writing in relative changes and taking logs yields

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1-\theta \mu_{U} & \theta(1-\beta) & 0 & 0 \\
-\frac{\theta-1}{\theta} & 1 & 0 & 0 \\
0 & 0 & 1+\alpha_{H}(\sigma-1) & \frac{(\sigma-1)\left(\alpha_{L}-\mu_{A}(\theta-1)\right)}{\theta-1} \\
0 & 0 & \alpha_{H}(\sigma-1) & \frac{\theta+(\sigma-1)\left(\alpha_{L}-\mu_{A}(\theta-1)\right)}{\theta-1}
\end{array}\right]\left[\begin{array}{c}
\ln \hat{L}_{R i} \\
\ln \hat{r}_{R i} \\
\ln \hat{r}_{F i} \\
\ln \hat{\tilde{L}}_{F i}
\end{array}\right]} \\
& =\left[\begin{array}{l}
1 \\
\frac{1}{\theta} \\
0 \\
0
\end{array}\right] \ln \hat{\Phi}_{R i}+\left[\begin{array}{c}
0 \\
0 \\
\frac{\alpha_{L}(\sigma-1)}{\theta-1} \\
\frac{1+\alpha_{L}(\sigma-1)}{\theta-1}
\end{array}\right] \ln \hat{\tilde{\Phi}}_{F i}+\left[\begin{array}{c}
\theta \ln \hat{\vec{u}}_{i}+\ln \hat{\bar{L}}-\theta \ln \hat{\bar{U}} \\
-\ln \hat{H}_{R i} \\
(\sigma-1) \ln \hat{\bar{A}}_{i}-\ln \hat{H}_{F i}-\frac{\alpha(\sigma-1)}{\theta}(\ln \hat{L}-\theta \ln \hat{\bar{U}})-\alpha_{K}(\sigma-1) \ln \hat{p}_{K}+\ln \hat{E} \\
(\sigma-1) \ln \hat{\bar{A}}_{i}-\frac{\alpha(\sigma-1)+1}{\theta}(\ln \hat{L}-\theta \ln \hat{\bar{U}})-\alpha_{K}(\sigma-1) \ln \hat{p}_{K}+\ln \hat{E}
\end{array}\right]
\end{aligned}
$$

The only changes from the baseline model are that the labor and housing elasticities have been relabeled, and the change in the price of capital has entered the residual. The results of part 4 apply.

Leisure. We consider an extension of the model where consumers derive utility over goods, housing and leisure. When preferences are Cobb-Douglas, the individual's problem is

$$
\max _{C, H, L} u_{i} C^{\alpha} H^{\beta} L^{\gamma} \epsilon_{i j}(\omega) \text { s.t. } \quad C+r_{R i} H+w_{j} L=w_{j}\left(1-t_{i j}\right)
$$

Solving for commute flows yields

$$
L_{i j}=\left(u_{i} w_{j}^{1-\gamma} r_{R i}^{-\beta} / d_{i j}\right)^{\theta}
$$

where $d_{i j} \equiv \frac{1}{1-t_{i j}}$. This has the same parametric form as the baseline model, but with alternative exponents on wages and house prices in the resident and labor supply terms and CMA definitions. The equilibrium can once again be written in the parametric form as the system (51), and the results of part 4 apply.

Preference Shocks. We consider an extension of the model in which consumers have preference rather than productivity shocks over each commute. Average income becomes $\bar{y}_{i}=\sum_{j} \pi_{j \mid i} w_{j}$ where $\pi_{j \mid i}=\left(w_{j} / d_{i j}\right)^{\theta} / \sum_{s}\left(w_{s} / d_{i s}\right)^{\theta}$ is the probability of commuting to j conditional on living in i. Effective labor supply is simply $L_{F j}$. The remaining equations of the model are unchanged. The equilibrium system becomes

$$
\begin{gathered}
L_{R i}=\bar{L} \bar{U}^{-\theta}\left(u_{i} r_{R i}^{\beta-1}\right)^{\theta} \Phi_{R i} \\
L_{F j}=\bar{L} \bar{U}^{-\theta} w_{j}^{\theta} \Phi_{F j} \\
L_{F i}=\frac{1}{\alpha} w_{i}^{\alpha(1-\sigma)-1} A_{i}^{\sigma-1} r_{F i}^{(1-\sigma)(1-\alpha)} E \\
r_{R i}=\frac{1-\beta}{H_{R i}} \bar{y}_{i} L_{R i} \\
r_{F i}=\left(\frac{A_{i}^{\sigma-1} w_{i}^{-\alpha(\sigma-1)} E}{(1-\alpha) H_{F i}}\right)^{\frac{1}{1+(\sigma-1)(1-\alpha)}}
\end{gathered}
$$

Approximating \bar{y}_{i} around the point $d_{i j}^{-\theta}=0$ yields $\hat{\bar{y}}_{i} \approx \hat{\Phi}_{R i}^{1 / \theta}$, so the endogenous variables can again be expressed as log-linear functions of CMA and structural residuals. In particular, taking changes and logs yields a system exactly the same as the baseline model, but with the second entry in the first column of the A matrix changing from $-\frac{\theta-1}{\theta}$ to -1 . The equilibrium can once again be written in the parametric form as the system (51), and the results of part 4 apply.

Alternative Labor and Residential Supply Elasticities and Timing Assumptions. We consider an extension of the model where commuters draw separate shocks over workplace and residence locations. Indirect utility across pairs of residential and employment locations (i, j) is given by

$$
U_{i j}(\omega)=\frac{u_{i} w_{j} r_{R i}^{\beta-1}}{d_{i j}} \epsilon_{j}(\omega) \nu_{i}(\omega),
$$

where $\epsilon_{j}(\omega)$ is a productivity shock for employment in location j drawn from a Frechet distribution with shape θ and $\nu_{i}(\omega)$ is a preference shock for living in location i drawn from a Frechet distribution with shape η. Whichever choice is made first, the supply and residents and workers to locations is given by

$$
\begin{aligned}
& L_{R i}=\bar{L} \bar{U}^{-\theta}\left(u_{i} r_{R i}^{\beta-1} \Phi_{R i}^{1 / \theta}\right)^{\eta} \\
& L_{F j}=\bar{L} \bar{U}^{-\theta} w_{j}^{\theta} \Phi_{F j}
\end{aligned}
$$

where $\Phi_{R i}=\sum_{j}\left(w_{j} / d_{i j}\right)^{\theta}$ as before, but now $\Phi_{F j}=\sum_{i}\left(u_{i} r_{R i}^{\beta-1}\right)^{\eta} d_{i j}^{-\theta} \Phi_{R i}^{\frac{\eta}{\varphi}-1}$. While these CMA terms look different from those in the original model, substituting the resident and labor supply curves back into them yield the same
system of equations (18)-(19) defining CMA. The remaining model equations remain log-linear in endogenous variables and $\Phi_{R i}$ and $\Phi_{F i}$ (noting that now expected income is simply $\bar{y}_{i}=\gamma \Phi_{R i}^{1 / \theta}$). These results are independent of whether employment or residential locations are chosen first. The equilibrium can once again be written in the parametric form as the system (51), and the results of part 4 apply.

C. 7 Reduced Form Coefficients and Residuals

This section makes explicit the structural content of the reduced form elasticities and residuals.

Residuals. As shown in the proof of Proposition 1, the residuals are given by $\mathbf{e}_{i}=A^{-1} \tilde{\mathbf{e}}_{i}$. Applying

$$
A^{-1}=\left(\begin{array}{cccc}
\frac{1}{\beta+\theta\left(1-\beta-\mu_{U}\right)} & -\frac{\theta(1-\beta)}{\beta+\theta\left(1-\beta-\mu_{U}\right)} & 0 & 0 \\
\frac{1-1}{\theta} \frac{1}{\beta+\theta\left(1-\beta-\mu_{U}\right)} & \frac{\theta(1-\mu)}{\beta+\theta\left(1-\beta-\mu_{U}\right)} & 0 & 0 \\
0 & 0 & \frac{\theta+(\sigma-1)\left(\alpha-(\theta-1) \mu_{A}\right)}{\theta \sigma-(\theta-1)(\sigma-1)\left(\alpha+\mu_{A}\right)} & -\frac{(\sigma-1)\left(\alpha-(\theta-1) \mu_{A}\right)}{\theta \sigma-(\theta-1)(\sigma-1)\left(\alpha+\mu_{A}\right)} \\
0 & 0 & -\frac{(1-\alpha)(\theta-1)(\sigma-1)}{\theta \sigma-(\theta-1)(\sigma-1)\left(\alpha+\mu_{A}\right)} & \frac{\theta-1)(\sigma-\alpha)+\alpha)}{\theta \sigma-(\theta-1)(\sigma-1)\left(\alpha+\mu_{A}\right)}
\end{array}\right)
$$

to the residual vector \tilde{e}_{i} yields

$$
\mathbf{e}_{i}=\left[\begin{array}{c}
\frac{1}{\beta+\theta\left(1-\beta-\mu_{U}\right)}\left[\theta \ln \hat{\bar{u}}_{i}+\ln \hat{\bar{L}}-\theta \ln \hat{\bar{U}}\right]+\frac{\theta(1-\beta)}{\beta+\theta\left(1-\beta-\mu_{U}\right)} \ln \hat{H}_{R i} \\
\frac{\theta-1}{\theta} \frac{1}{\beta+\theta\left(1-\beta-\mu_{U}\right)}\left[\theta \ln \hat{\bar{u}}_{i}+\ln \hat{\bar{L}}-\theta \ln \hat{\bar{U}}\right]-\frac{\theta\left(1-\mu_{U}\right)}{\beta+\theta\left(1-\beta-\mu_{U}\right)} \ln \hat{H}_{R i} \\
\frac{\theta}{\theta \sigma-(\theta-1)(\sigma-1)\left(\alpha+\mu_{A}\right)}\left[(\sigma-1) \ln \hat{\bar{A}}_{i}-\frac{\theta+(\sigma-1)\left(\alpha-(\theta-1) \mu_{A}\right)}{\theta} \ln \hat{H}_{F i}+\frac{(\sigma-1)\left(\alpha+\mu_{A}\right)}{\theta}(\ln \hat{L}-(\theta-1) \ln \hat{\bar{U}})+\ln \hat{E}\right] \\
\frac{\theta-1}{\theta \sigma-(\theta-1)(\sigma-1)\left(\alpha+\mu_{A}\right)}\left[(\sigma-1) \ln \hat{\bar{A}}_{i}+\frac{(1-\alpha)(\theta-1)(\sigma-1)}{\theta-1} \ln \hat{H}_{F i}+\frac{\sigma}{\theta-1}(\ln \hat{L}-(\theta-1) \ln \hat{\bar{U}})+\ln \hat{E}\right]
\end{array}\right]
$$

where each entry corresponds to the residual for the specification with $L_{R i}, r_{R i}, r_{F i}, \tilde{L}_{F i}$ as the outcome, respectively. Residuals that vary across observations contain weighted sums of changes in (i) unobserved amenities and residential floorspace supplies for residential outcomes and (ii) unobserved productivities and commercial floorspace supplies for commercial outcomes.

CMA Elasticities. Computing $\boldsymbol{\beta}_{R}=A^{-1} b_{R}$ and $\boldsymbol{\beta}_{F}=A^{-1} b_{F}$ yields

$$
\left(\begin{array}{c}
\beta_{L_{R}} \\
\beta_{r_{R}} \\
\beta_{r_{F}} \\
\beta_{L_{F}}
\end{array}\right)=\left(\begin{array}{c}
\frac{\beta}{\beta+\theta\left(1-\beta-\mu_{U}\right)} \\
\frac{1-\mu_{U}}{\beta+\theta\left(1-\beta-\mu_{U}\right)} \\
\frac{1+\theta\left(\frac{\sigma}{\sigma-1} \frac{1}{\alpha+\mu_{A}}-1\right)}{(\sigma-1)\left(\alpha+\mu_{A}\right)} \frac{1}{1+\theta\left(\frac{\sigma}{\sigma-1} \frac{1}{\alpha+\mu_{A}}-1\right)}
\end{array}\right)
$$

Rearranging these expressions yields $\mu_{A}=\frac{\sigma}{\sigma-1} / \frac{\beta_{L_{F}}}{\beta_{r_{F}}}-\alpha$ and $\mu_{U}=1-\beta / \frac{\beta_{L_{R}}}{\beta_{r_{R}}}$ as referenced in the text.
Given the reduced form estimates and the estimate of θ from the gravity equation, this is a system of 4 equations in 5 parameters $\beta, \mu_{U}, \sigma, \alpha, \mu_{A}$. However, even if one additional parameter is calibrated, these equations cannot be inverted for the remaining structural parameters. Consider first the system of equations determining β, μ_{U} in the first two lines. This can be rearranged into

$$
\beta=\frac{\theta}{\theta-1+\frac{1}{\beta_{L_{R}}}}\left(1-\mu_{U}\right)
$$

$$
\beta=\frac{\theta-\frac{1}{\beta_{r_{R}}}}{\theta-1}\left(1-\mu_{U}\right)
$$

These are two straight lines in the $\left(\beta, 1-\mu_{U}\right)$ space with the same intercept (at zero) but different slopes, other than the knife edge case where $\frac{\theta}{\theta-1+\frac{1}{\beta_{L_{R}}}}=\frac{\theta-\frac{1}{\beta_{r_{R}}}}{\theta-1}$ in which case there are an infinite number of solutions. For the second two equations, if α is calibrated to an external value then the system of equations is

$$
\begin{aligned}
\mu_{A} & =\frac{\sigma}{\sigma-1} /\left(1+\frac{1-\beta_{r_{F}}}{\theta}\right)-\alpha \\
\mu_{A} & =\frac{\sigma}{\sigma-1} /\left(\frac{\beta_{L_{F}}(\theta-1)}{\beta_{L_{F}} \theta-1}\right)-\alpha .
\end{aligned}
$$

These are two straight lines in the $\left(\mu_{A}, \sigma /(\sigma-1)\right)$ space with the same intercept but different slopes, other than the knife edge case where $1+\frac{1-\beta_{r_{F}}}{\theta}=\frac{\beta_{L_{F}}(\theta-1)}{\beta_{L_{F}} \theta-1}$ in which case there are an infinite number of solutions.

Given that these equations cannot be inverted, one could try to calibrate one parameter (such as α) and jointly estimate the remaining 5 (including θ) to most closely match the CMA elasticities and the commuting semi-elasticity in the gravity equation. However, the match will not be exact given the results above. The sufficient statistics approach has the advantage that the researcher does not need to specify the value of all structural parameters and can conduct analysis using the commuting semi-elasticity, the CMA elasticities (and σ, β to obtain the overall level of changes). The researcher also does not need to take a stance on the particular model generating the data, i.e. what the specific cluster of structural parameters are that determine $\boldsymbol{\beta}_{R}, \boldsymbol{\beta}_{F}$.

C. 8 Proofs \& Additional Derivations

C.8.1 Proof of Proposition 1

Part 1: Reduced Form. Stacking the equilibrium conditions delivers

$$
\begin{aligned}
& L_{R i}=\bar{L} \bar{U}^{-\theta}\left(u_{i} r_{R i}^{\beta-1}\right)^{\theta} \Phi_{R i} \\
& \tilde{L}_{F j}=\bar{L} \bar{U}^{-(\theta-1)} w_{j}^{\theta-1} \tilde{\Phi}_{F j} \\
& \tilde{L}_{F i}=\alpha w_{i}^{\alpha(1-\sigma)-1} A_{i}^{\sigma-1} r_{F i}^{(1-\sigma)(1-\alpha)} E \\
& r_{R i}=\frac{1-\beta}{H_{R i}} \Phi_{R i}^{1 / \theta} L_{R i}^{\frac{\theta-1}{\theta}} \\
& r_{F i}=\left((1-\alpha) \frac{A_{i}^{\sigma-1} w_{i}^{-\alpha(\sigma-1)} E}{H_{F i}}\right)^{\frac{1}{1+(\sigma-1)(1-\alpha)}} \\
& \bar{U}=\left[\sum_{i}\left(u_{i} \Phi_{R i}^{1 / \theta} r_{R i}^{\beta-1}\right)^{\theta}\right]^{1 / \theta}
\end{aligned}
$$

where $E=\beta \sum_{i} \Phi_{R i}^{1 / \theta} L_{R i}^{\frac{\theta-1}{\theta}}$ is total expenditure, and the CMA equations are

$$
\begin{align*}
& \Phi_{R i}=\left(\bar{L} \bar{U}^{-\theta}\right)^{-1} \sum_{j} d_{i j}^{-\theta} \frac{L_{F j}}{\Phi_{F j}} \tag{31}\\
& \Phi_{F j}=\left(\bar{L} \bar{U}^{-\theta}\right)^{-1} \sum_{i} d_{i j}^{-\theta} \frac{L_{R i}}{\Phi_{R i}} \tag{32}
\end{align*}
$$

$$
\begin{equation*}
\tilde{\Phi}_{F j}=\left(\bar{L} \bar{U}^{-\theta}\right)^{-\frac{\theta-1}{\theta}} \sum_{i} d_{i j}^{-\theta}\left(\frac{L_{R i}}{\Phi_{R i}}\right)^{(\theta-1) / \theta} \tag{33}
\end{equation*}
$$

Using the second line to substitute out for wages we arrive at a system of 4 equations in $\left\{L_{R i}, \tilde{L}_{F i}, r_{R i}, r_{F i}\right\}$ given $\left\{\Phi_{R i}, \tilde{\Phi}_{F i}\right\}$

$$
\begin{aligned}
L_{R i}^{1-\theta \mu_{U}} r_{R i}^{\theta(1-\beta)} & =\bar{L} \bar{U}^{-\theta} \Phi_{R i} \bar{u}_{i}^{\theta} \\
L_{R i}^{-\frac{\theta-1}{\theta}} r_{R i} & =(1-\beta) \Phi_{R i}^{1 / \theta} H_{R i}^{-1} \\
r_{F i}^{1+(\sigma-1)(1-\alpha)} \tilde{L}_{F i}^{\frac{(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta-1}} & =(1-\alpha) \bar{A}_{i}^{\sigma-1}\left(\left(\bar{L} \bar{U}^{-(\theta-1)}\right) \tilde{\Phi}_{F j}\right)^{\frac{\alpha(\sigma-1)}{\theta-1}} H_{F i}^{-1} E \\
r_{F i}^{(\sigma-1)(1-\alpha)} \tilde{L}_{F i}^{\frac{\theta+(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta-1}} & =\alpha\left(\left(\bar{L} \bar{U}^{-(\theta-1)}\right) \tilde{\Phi}_{F j}\right)^{\frac{1+\alpha(\sigma-1)}{\theta-1}} \bar{A}_{i}^{\sigma-1} E
\end{aligned}
$$

Letting $\hat{x}=x^{\prime} / x$ denote relative changes across two equilibria, we can take logs and rearrange to get

$$
\begin{align*}
& =\underbrace{\left[\begin{array}{c}
1 \\
\frac{1}{\theta} \\
0 \\
0
\end{array}\right]}_{b_{R}} \ln \hat{\Phi}_{R i}+\underbrace{\left[\begin{array}{c}
0 \\
0 \\
\frac{\alpha(\sigma-1)}{\theta-1} \\
\frac{1+\alpha(\sigma-1)}{\theta-1}
\end{array}\right]}_{b_{F}} \ln \hat{\tilde{\Phi}}_{F i}+\underbrace{\left[\begin{array}{c}
\\
-\ln \hat{\bar{u}}_{i}+\ln \hat{\bar{L}}-\theta \ln \hat{\bar{U}} \\
(\sigma i \\
(\sigma-1) \ln \hat{\bar{A}}_{i}-\ln \hat{H}_{F i}+\frac{\alpha(\sigma-1)}{\theta-1}(\ln \hat{L}-(\theta-1) \ln \hat{\bar{U}})+\ln \hat{E} \\
(\sigma-1) \ln \hat{\bar{A}}_{i}+\frac{1+\alpha(\sigma-1)}{\theta-1}(\ln \hat{L}-(\theta-1) \ln \hat{\bar{U}})+\ln \hat{E}
\end{array}\right]}_{\tilde{\mathbf{e}}_{i}} \tag{34}
\end{align*}
$$

Premultiplying by A^{-1} delivers the system

$$
\ln \hat{\tilde{y}}_{i}=\boldsymbol{\beta}_{R} \ln \hat{\Phi}_{R i}+\boldsymbol{\beta}_{F} \ln \hat{\tilde{\Phi}}_{F i}+\mathbf{e}_{i}
$$

where $\boldsymbol{\beta}_{R}=A^{-1} b_{R}, \boldsymbol{\beta}_{F}=A^{-1} b_{F}$ and $\mathbf{e}_{i}=A^{-1} \tilde{\mathbf{e}}_{i}$. Note that the last two elements of $\boldsymbol{\beta}_{R}$ are zero as are the first two elements of $\boldsymbol{\beta}_{F} .{ }^{59}$ Since A^{-1} is block diagonal, the first two elements of \mathbf{e}_{i} determining residential outcomes depend only on $\hat{\bar{u}}_{i}, \hat{H}_{R i}, \hat{\bar{L}}, \hat{\bar{U}}$ while the second two elements determining commercial outcomes depend only on $\hat{\bar{A}}_{i}, \hat{H}_{F i}, \hat{\bar{L}}, \hat{\bar{U}}, \hat{E}$. The exact reduced form (34) is the one which is used to conduct counterfactuals in parts 2 and 3.

However, in the data we observe $L_{F i}$ rather than $\tilde{L}_{F i}$. Combining $L_{F j}=\bar{L} \bar{U}^{-\theta} w_{j}^{\theta} \Phi_{F j}$ and $\tilde{L}_{F j}=\left(\bar{L} \bar{U}^{-(\theta-1)}\right) w_{j}^{\theta-1} \tilde{\Phi}_{F j}$

[^7]Manipulating these expressions yields $\mu_{A}=\frac{\sigma}{\sigma-1} / \frac{\beta_{L_{F}}}{\beta_{r_{F}}}-\alpha$ and $\mu_{U}=1-\beta / \frac{\beta_{L_{R}}}{\beta_{r_{R}}}$ as referenced in the text.
yields the following relationship between the two

$$
\hat{\tilde{L}}_{F j}=\left(\frac{\hat{L}_{F j}}{\hat{\Phi}_{F j}}\right)^{\frac{\theta-1}{\theta}} \hat{\tilde{\Phi}}_{F j}
$$

Substituting this in, we arrive at the following system

$$
\begin{align*}
& \underbrace{\left[\begin{array}{cccc}
1-\theta \mu_{U} & \theta(1-\beta) & 0 & 0 \\
-\frac{\theta-1}{\theta} & 1 & 0 & 0 \\
0 & 0 & 1+(\sigma-1)(1-\alpha) & \frac{(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta} \\
0 & 0 & (\sigma-1)(1-\alpha) & \frac{\theta+(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
\ln \hat{L}_{R i} \\
\ln \hat{r}_{R i} \\
\ln \hat{r}_{F i} \\
\ln \hat{L}_{F i}
\end{array}\right]}_{\ln \hat{\mathbf{y}}_{i}}=\underbrace{\left[\begin{array}{l}
1 \\
\frac{1}{\theta} \\
0 \\
0
\end{array}\right]}_{b_{R}} \ln \hat{\Phi}_{R i}+\underbrace{\left[\begin{array}{c}
0 \\
\frac{(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta} \\
\frac{\theta+(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta}
\end{array}\right]}_{b_{F}} \ln \hat{\Phi}_{F i} \\
& +\underbrace{\left[\begin{array}{c}
0 \\
0 \\
\mu_{A}(\sigma-1) \\
\mu_{A}(\theta-1)(\sigma-1)-1
\end{array}\right]}_{\tilde{b}_{F}} \ln \hat{\tilde{\Phi}}_{F i}+\underbrace{\left[\begin{array}{c}
\theta \ln \hat{\bar{u}}_{i}+\ln \hat{\bar{L}}-\theta \ln \hat{\bar{U}} \\
-\ln \hat{H}_{R i} \\
(\sigma-1) \ln \hat{\bar{A}}_{i}-\ln \hat{H}_{F i}+\frac{\alpha(\sigma-1)}{\theta-1}(\ln \hat{L}-(\theta-1) \ln \hat{\bar{U}})+\ln \hat{E} \\
(\sigma-1) \ln \hat{\bar{A}}_{i}+\frac{1+\alpha(\sigma-1)}{\theta-1}(\ln \hat{L}-(\theta-1) \ln \hat{\bar{U}})+\ln \hat{E}
\end{array}\right]}_{\tilde{\mathbf{e}}_{i}} \tag{35}
\end{align*}
$$

or, after premultiplying by A^{-1},

$$
\ln \hat{\mathbf{y}}_{i}=\boldsymbol{\beta}_{R} \ln \hat{\Phi}_{R i}+\boldsymbol{\beta}_{F} \ln \hat{\Phi}_{F i}+\tilde{\boldsymbol{\beta}}_{F} \ln \hat{\tilde{\Phi}}_{F i}+\mathbf{e}_{i}
$$

This reduced form (35) along with the CMA definitions (31)-(33) hold globally to define a change in endogenous variables $\left\{\hat{L}_{R i}, \hat{r}_{R i}, \hat{r}_{F i}, \hat{L}_{F i}, \hat{\Phi}_{R i}, \hat{\Phi}_{F i}, \hat{\tilde{\Phi}}_{F i}\right\}$ (and analogously the auxiliary variables $\hat{\bar{U}}, \hat{E}$ defined as a function of these variables above) given a change in exogenous (or "forcing") variables $\left\{\hat{\bar{u}}_{i}, \hat{\bar{A}}_{i}, \hat{H}_{R i}, \hat{H}_{F i}, \hat{\bar{L}}, \hat{d}_{i j}\right\}$. Note that in counterfactuals, all exogenous variables other than commute costs $d_{i j}$ will be held constant.

However, the two FCMA terms, defined in (32) and (33), are very highly correlated in the data (correlation coefficient of 0.98). To make this regression simpler and to allow for enough residual variation to identify the coefficients on each term, I take a first order approximation of $\tilde{\Phi}_{F i}$ around the point $d_{i j}^{-\theta}=0$ which yields $\tilde{\Phi}_{F j} \approx \Phi_{F j}^{\frac{\theta-1}{\theta}}$. Substituting this in simplifies the system to

$$
\begin{gather*}
{\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
1-\theta \mu_{U} & \theta(1-\beta) & 0 \\
-\frac{\theta-1}{\theta} & 1 & 0 \\
0 & 0 & 1+(\sigma-1)(1-\alpha) \\
0 & 0 & (\sigma-1)(1-\alpha)
\end{array} \begin{array}{c}
\frac{(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta} \\
=\left[\begin{array}{l}
1 \\
\frac{\theta+(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta}
\end{array}\right] \\
0 \\
0
\end{array}\right] \ln \hat{\Phi}_{R i}+\left[\begin{array}{c}
0 \\
0 \\
\frac{\alpha(\sigma-1)}{\theta} \\
\frac{1+\alpha(\sigma-1)}{\theta}
\end{array}\right] \ln \hat{\Phi}_{F i}+\left[\begin{array}{c}
\ln \hat{\bar{u}}_{i}+\ln \hat{\bar{L}}-\theta \ln \hat{\bar{U}} \\
\ln \hat{r}_{R i} \\
\ln \hat{r}_{F i} \\
\ln \hat{L}_{F i}
\end{array}\right]} \\
(\sigma-1) \ln \hat{H}_{R i} \hat{\bar{A}}_{i}-\ln \hat{H}_{F i}+\frac{\alpha(\sigma-1)}{\theta-1}(\ln \hat{L}-(\theta-1) \ln \hat{\bar{U}})+\ln \hat{E} \\
(\sigma-1) \ln \hat{\bar{A}}_{i}+\frac{1+\alpha(\sigma-1)}{\theta-1}(\ln \hat{L}-(\theta-1) \ln \hat{\bar{U}})+\ln \hat{E}
\end{array}\right]}
\end{gather*}
$$

or, after premultiplying by A^{-1},

$$
\ln \hat{\mathbf{y}}_{i}=\boldsymbol{\beta}_{R} \ln \hat{\Phi}_{R i}+\boldsymbol{\beta}_{F} \ln \hat{\Phi}_{F i}+\mathbf{e}_{i}
$$

for $\mathbf{y}_{i}=\left[L_{R i}, r_{R i}, r_{F i}, L_{F i}\right]$. Compared with the unapproximated model, all that has happened is to approximate $\ln \hat{\tilde{\Phi}}_{F j} \approx \frac{\theta-1}{\theta} \ln \hat{\Phi}_{F j}$ to collapse the two FCMA terms into one.

Lastly, since we will use the system (34) to conduct counterfactuals with the estimated parameters, we need to relate the coefficients we will estimate in (36) to those in (34). The only difference is that the last two elements of the 4 th column of A and b_{F} have θ rather than $\theta-1$ in the numerator. Computing $A^{-1} b_{R}$ after this adjustments yields the same coefficient as in the unapproximated model, but the commercial variable elasticities change to $A^{-1} b_{F}=\left(\begin{array}{c}0 \\ 0 \\ \frac{\theta-1}{\theta} \frac{1}{1+\theta\left(\frac{\sigma}{\sigma-1} \frac{1}{\alpha+\mu_{A}}-1\right)} \\ \frac{\sigma}{(\sigma-1)\left(\alpha+\mu_{A}\right)} \frac{1}{1+\theta\left(\frac{\sigma}{\sigma-1} \frac{1}{\alpha+\mu_{A}}-1\right)}\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ \frac{\theta-1}{\theta} \beta_{r_{F}} \\ \beta_{L_{F}}\end{array}\right)$. So the only change needed is to replace $\beta_{r_{F}}$ with $\frac{\theta}{\theta-1} \beta_{r_{F}}$ in the unapproximated model equations (where $\beta_{r_{F}}$ is the elasticity estimated in the data).

Lastly, we show that unique (to-scale) values of CMA can be recovered given $d_{i j}, L_{R i}, L_{F i}, \theta$. Equations (31) and (32) can be written in the form

$$
\begin{aligned}
\Phi_{R i} & =\sum_{j} K_{i j}^{R} \Phi_{F j}^{-1} \\
\Phi_{F j} & =\sum_{i} K_{i j}^{F} \Phi_{R i}^{-1}
\end{aligned}
$$

where $K_{i j}^{R} \equiv d_{i j}^{-\theta} L_{F j}$ and $K_{i j}^{F} \equiv d_{i j}^{-\theta} L_{R i}$. This satisfies the structure of the equations in theorem 1 in Allen et. al. (2014). In the notation of that theorem, $\Gamma=I$ and $B=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$. The spectral radius of the matrix $\left|B \Gamma^{-1}\right|$ (where $|\cdot|$ denotes the element-wise absolute value) is one. Parts (i) and (ii) of theorem 1 then imply that there exists unique (to-scale) solution $\Phi_{R i}, \Phi_{F i} .{ }^{60}$

Part 2: Relative Impacts of Transit Infrastructure. We now show we can use this system of equations to compute changes in economic activity relative to the citywide average in response to a transit shock using estimates of θ and the reduced form elasticities $\beta_{L_{R}}, \beta_{r_{R}}, \beta_{r_{F}}, \beta_{L_{F}}$, in addition to data on the initial equilibrium $d_{i j}, L_{R i}, L_{F i}$ and the change in transit infrastructure $\hat{d}_{i j}$. Assuming unobservables are constant across equilibria, exponentiating the (unapproximated) system (34) and letting $A_{i j}^{-1}$ denote the $i j$-th entry of A^{-1} yields

$$
\begin{align*}
& \hat{L}_{R i}=\hat{\Phi}_{R i}^{\beta_{L_{R}}}\left(\hat{\bar{L}} \hat{\bar{U}}^{-\theta}\right)^{A_{11}^{-1}} \tag{37}\\
& \hat{r}_{R i}=\hat{\Phi}_{R i}^{\beta_{r_{R}}}\left(\hat{\bar{L}} \hat{\bar{U}}^{-\theta}\right)^{A_{21}^{-1}} \tag{38}\\
& \hat{r}_{F i}=\hat{\tilde{\Phi}}_{F i}^{\beta_{r}}\left(\hat{\bar{L}} \hat{\bar{U}}^{-(\theta-1)}\right)^{\left(A_{33}^{-1} \frac{\alpha(\sigma-1)}{\theta}+A_{34}^{-1} \frac{\alpha(\sigma-1)+1}{\theta}\right)} \hat{E}^{A_{33}^{-1}+A_{34}^{-1}} \tag{39}\\
& \hat{\tilde{L}}_{F i}=\hat{\tilde{\Phi}}_{F i}^{\beta_{L}}\left(\hat{\bar{L}} \hat{\bar{U}}^{-(\theta-1)}\right)^{\left(A_{43}^{-1} \frac{\alpha(\sigma-1)}{\theta}+A_{44}^{-1} \frac{\alpha(\sigma-1)+1}{\theta}\right)} \hat{E}^{A_{43}^{-1}+A_{44}^{-1}} \tag{40}
\end{align*}
$$

where $\hat{\Phi}_{R i}, \hat{\Phi}_{F i}, \hat{\tilde{\Phi}}_{F i}, \hat{\tilde{L}}_{F i}$ are given by

$$
\begin{equation*}
\hat{\Phi}_{R i}=\left(\hat{\bar{L}} \hat{\bar{U}}^{-\theta}\right)^{-1} \sum_{j} \pi_{i j}^{R} \hat{d}_{i j}^{-\theta} \frac{\hat{L}_{F j}}{\hat{\Phi}_{F j}} \tag{41}
\end{equation*}
$$

[^8]\[

$$
\begin{align*}
& \hat{\Phi}_{F j}=\left(\hat{\bar{L}} \hat{\bar{U}}^{-\theta}\right)^{-1} \sum_{i} \pi_{i j}^{F} \hat{d}_{i j}^{-\theta} \frac{\hat{L}_{R i}}{\hat{\Phi}_{R i}} \tag{42}\\
& \hat{\tilde{\Phi}}_{F j}=\left(\hat{\bar{L}} \hat{\bar{U}}^{-\theta}\right)^{-\frac{\theta-1}{\theta}} \sum_{i} \tilde{\pi}_{i j}^{F} \hat{d}_{i j}^{-(\theta-1)}\left(\frac{\hat{L}_{R i}}{\hat{\Phi}_{R i}}\right)^{(\theta-1) / \theta} \tag{43}\\
& \hat{L}_{F j}=\left(\hat{\tilde{L}}_{F j} / \hat{\tilde{\Phi}}_{F j}\right)^{\frac{\theta}{\theta-1}} \hat{\Phi}_{F j} \tag{44}
\end{align*}
$$
\]

Note that we are using that $\boldsymbol{\beta}_{F}$ and $\boldsymbol{\beta}_{R}$ have zeros in the first and last two entries respectively, otherwise both CMA terms would appear in each line. Here $\pi_{i j}^{R}=\frac{d_{i j}^{-\theta} \frac{L_{F j}}{\Phi_{F j}}}{\sum_{j} d_{i j}^{-\theta} \frac{L_{F j}}{\Phi_{F j}}}, \pi_{i j}^{F}=\frac{d_{j i}^{-\theta} \frac{L_{R j}}{\Phi_{R j}}}{\sum_{j} d_{j i}^{-\theta} \frac{L_{R j}}{\Phi_{R j}}}$ and $\tilde{\pi}_{i j}^{F}=\frac{d_{j i}^{-\theta}\left(\frac{L_{R j}}{\Phi_{R j}}\right)^{\frac{\theta-1}{\theta}}}{\sum_{j} d_{j i}^{-\theta}\left(\frac{L_{R j}}{\Phi_{R j}}\right)^{\frac{\theta-1}{\theta}}}$. Since these shares are homogenous of degree zero in $\Phi_{R i}, \Phi_{F i}$, their unique values are identified using values for $d_{i j}, L_{R i}, L_{F i}, \theta$ (since these determine unique to-scale solutions for the CMA terms). In my particular model, computing the terms in the A^{-1} matrix yields the system

$$
\begin{align*}
\hat{L}_{R i} & =\hat{\Phi}_{R i}^{\beta_{L_{R}}} \hat{\bar{L}}^{\beta_{L_{R}}} \hat{\bar{U}}^{-\frac{\beta_{L_{R}} \theta}{\beta}} \tag{45}\\
\hat{r}_{R i} & =\hat{\Phi}_{R i}^{\beta_{r_{R}}} \hat{\bar{L}}^{\beta_{r_{R}}} \hat{\bar{U}}^{-\frac{\beta_{L_{R}}(\theta-1)}{\beta}} \tag{46}\\
\hat{r}_{F i} & =\hat{\tilde{\Phi}}_{F i}^{\beta_{r_{F}}}\left(\hat{\bar{L}} \hat{\bar{U}}^{-(\theta-1)}\right)^{\beta_{r_{F}}} \hat{E}^{\frac{\beta_{L_{F}} \theta}{\sigma}} \tag{47}\\
\hat{\tilde{L}}_{F i} & =\hat{\tilde{\Phi}}_{F i}^{\beta_{L_{F}}}\left(\hat{\bar{L}} \hat{\bar{U}}^{-(\theta-1)}\right)^{\beta_{L_{F}}} \hat{E}^{\beta_{L_{F}} \frac{\theta-1}{\sigma}} \tag{48}
\end{align*}
$$

The change in constants are given by

$$
\begin{align*}
& \hat{\bar{U}}=\hat{\bar{L}}^{\left(\beta_{L_{R}}-1\right) \frac{\beta}{\theta \beta_{L_{R}}}}\left[\sum_{i} \pi_{R i} \hat{\Phi}_{R i}^{\beta_{L_{R}}}\right]^{\frac{\beta}{\theta \beta_{L_{R}}}} \tag{49}\\
& \hat{E}=\sum_{i} \pi_{i}^{E} \hat{\Phi}_{R i}^{1 / \theta} \hat{L}_{R i}^{\frac{\theta-1}{\theta}} \tag{50}
\end{align*}
$$

where $\pi_{i}^{L_{R}}=\frac{L_{R i}}{\sum_{r} L_{R s}}$ and $\pi_{i}^{E}=\frac{\Phi_{R i}^{1 / \theta} L_{R i}^{\frac{\theta-1}{\theta}}}{\sum_{r} \Phi_{R i}^{1 / \theta} L_{R i}^{\frac{\theta-1}{\theta}}}$ are residential and expenditure shares from the initial equilibrium, where the expression for $\hat{\bar{U}}$ comes from summing up (45).

Now define $\hat{\hat{y}}_{i}=\hat{y}_{i} /\left(\prod_{i} \hat{y}_{i}\right)^{1 / I}$ as the double-differenced change in y_{i} between two periods relative to the geometric average change across the whole city. Then this system becomes

$$
\begin{aligned}
& \hat{\hat{L}}_{R i}=\hat{\hat{\Phi}}_{R i}^{\beta_{L_{R}}} \\
& \hat{\hat{r}}_{R i}=\hat{\hat{\Phi}}_{R i}^{\beta_{r_{R}}} \\
& \hat{\hat{r}}_{F i}=\hat{\tilde{\tilde{\Phi}}}_{F i}^{\theta-1} \beta_{r_{F}} \\
& \hat{\hat{\tilde{L}}}_{F i}=\hat{\hat{\tilde{\Phi}}}_{F i}^{\beta_{L_{F}}} \\
& \hat{\hat{\Phi}}_{R i}=\lambda_{R} \sum_{j} \pi_{i j}^{R} \hat{d}_{i j}^{-\theta} \frac{\hat{\hat{L}}_{F j}}{\hat{\hat{\Phi}}_{F j}} \\
& \hat{\hat{\Phi}}_{F i}=\lambda_{F} \sum_{j} \pi_{i j}^{F} \hat{d}_{j i}^{-\theta} \frac{\hat{\hat{L}}_{R j}}{\hat{\hat{\Phi}}_{R j}}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\tilde{\Phi}}_{F i}=\tilde{\lambda}_{F} \sum_{j} \tilde{\pi}_{i j}^{F} \hat{d}_{j i}^{-(\theta-1)}\left(\frac{\hat{\hat{L}}_{R j}}{\hat{\hat{\Phi}}_{R j}}\right)^{(\theta-1) / \theta} \\
& \hat{\hat{L}}_{F j}=\left(\hat{\tilde{L}}_{F j} / \hat{\tilde{\Phi}}_{F j}\right)^{\frac{\theta}{\theta-1}} \hat{\tilde{\Phi}}_{F j}
\end{aligned}
$$

where $\lambda_{R}=\left[\prod_{i} \sum_{j} \pi_{i j}^{R} \hat{d}_{i j}^{-\theta} \frac{\hat{\hat{L}}_{F j}}{\hat{\Phi}_{F j}}\right]^{-1 / N}, \lambda_{F}=\left[\prod_{i} \sum_{j} \pi_{i j}^{F} \hat{d}_{j i}^{-\theta} \frac{\hat{\hat{L}}_{R j}}{\hat{\Phi}_{R j}}\right]^{-1 / N}$ and $\tilde{\lambda}_{F}=\left[\prod_{i} \sum_{i} \tilde{\pi}_{i j}^{F} \hat{d}_{i j}^{\theta-1}\left(\frac{\hat{\hat{L}}_{R i}}{\hat{\hat{\Phi}}_{R i}}\right)^{(\theta-1) / \theta}\right]^{-1 / N}$. To solve this system, one can begin by solving for $\Phi_{R i}, \Phi_{F i}$ using $\left\{\theta, d_{i j}, L_{R i}, L_{F i}\right\}$ following the procedure outlined above. With these in hand, $\pi_{i j}^{R}, \pi_{i j}^{F}, \tilde{\pi}_{i j}^{F}$ can be computed. Then, a change in the transit network $\hat{\mathbf{d}}$ can be fed into the system above which constitutes a system of $8 N$ equations in as many unknowns $\left\{\hat{\hat{L}}_{R i}, \hat{\hat{L}}_{F i}, \hat{\tilde{\tilde{L}}}_{F i}, \hat{\hat{r}}_{R i}, \hat{\hat{r}}_{F i}, \hat{\hat{\Phi}}_{R i}, \hat{\hat{\Phi}}_{F i}, \hat{\hat{\tilde{\Phi}}}_{F i}\right\}$ given data $\left\{L_{F j}, L_{R i}, d_{i j}\right\}$ and parameters $\left(\theta, \beta_{L_{R}}, \beta_{r_{R}}, \beta_{r_{F}}, \beta_{L_{F}}\right)$. Any model with a gravity equation for commuting with commute costs $d_{i j}$, commuting elasticity θ, and the reduced form $\ln \hat{\mathbf{y}}_{i}=\boldsymbol{\beta}_{R} \ln \hat{\Phi}_{R i}+\boldsymbol{\beta}_{F} \ln \hat{\Phi}_{F i}+e_{i}$ will deliver the same distribution of relative changes to the shock across the city.

Part 3: Level Impact of Transit Infrastructure. Solving for the level effect of a counterfactual change in transit infrastructure requires solving for (i) the scale of each relative change variable from part 2 and (ii) the three endogenous scalars $\hat{\bar{U}}, \hat{\bar{L}}, \hat{E}$ until the system of equations (41)-(50) holds. This is a system of $8 N+2$ equations in as many unknowns, if the value of either $\hat{\bar{U}}$ or $\hat{\bar{L}}$ is known. This last condition is realized by alternative assumptions on population mobility. In the closed city case, city population is fixed so that $\hat{\bar{L}}=1$. In the case with migration into the city, two equations in $\hat{\bar{U}}$ or $\hat{\bar{L}}$ are provided in Appendix E.1. The additional data requirements to solve this system are the shares $\pi_{i}^{L_{R}}$ and π_{i}^{E} (which can be solved using $\left\{L_{F j}, L_{R i}, d_{i j}, \theta\right\}$. The additional parameters required are β, σ as can be seen from the exponents on the scalars in (45)-(48).

Part 4: Isomorphisms. Consider a model where the supply of commuters is determined by a gravity equation $L_{i j}=c \delta_{j} \gamma_{i} \kappa_{i j}$. Then the supply of residents and labor are given by $L_{R i}=\gamma_{i} \Phi_{R i}$ and $L_{F i}=\delta_{i} \Phi_{F i}$ where

$$
\begin{aligned}
& \Phi_{R i}=c \sum_{j} \frac{L_{F j}}{\Phi_{F j}} \kappa_{i j} \\
& \Phi_{F i}=c \sum_{j} \frac{L_{R i}}{\Phi_{R i}} \kappa_{j i}
\end{aligned}
$$

Following the results in part 1, this solution has a unique to-scale solution.
Now suppose that in addition to these two equations pinning down CMA, the equilibrium can be written as a system of K equations in K endogenous variables $\left\{y_{1 i}, \ldots, y_{k i}\right\}_{i=1}^{I}$ of the form

$$
\begin{equation*}
\prod_{k=1}^{K} y_{k i}^{\alpha_{k h}}=\lambda_{h} \Phi_{R i}^{b_{h}^{R}} \Phi_{F i}^{b_{h}^{F}} e_{i h} \text { for } h=1, \ldots, K \tag{51}
\end{equation*}
$$

Then this system can be written of the form

$$
\left[\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{K 1} \\
\vdots & \ddots & \vdots \\
\alpha_{K 1} & \cdots & \alpha_{K K}
\end{array}\right]\left[\begin{array}{c}
\ln \hat{y}_{1 i} \\
\vdots \\
\ln \hat{y}_{K i}
\end{array}\right]=\left[\begin{array}{c}
b_{1}^{R} \\
\vdots \\
b_{K}^{R}
\end{array}\right] \ln \hat{\Phi}_{R i}+\left[\begin{array}{c}
b_{1}^{F} \\
\vdots \\
b_{K}^{F}
\end{array}\right] \ln \hat{\Phi}_{F i}+\left[\begin{array}{c}
\ln \hat{e}_{1 i}+\ln \hat{\lambda}_{1} \\
\vdots \\
\ln \hat{e}_{K i}+\ln \hat{\lambda}_{K}
\end{array}\right]
$$

$$
\begin{aligned}
\Leftrightarrow A \ln \hat{\mathbf{y}}_{i} & =b^{R} \ln \hat{\Phi}_{R i}+b^{F} \ln \hat{\Phi}_{F i}+\ln \hat{\tilde{\mathbf{e}}}_{i} \\
\Leftrightarrow \ln \hat{\mathbf{y}}_{i} & =\boldsymbol{\beta}_{R} \ln \hat{\Phi}_{R i}+\boldsymbol{\beta}_{F} \ln \hat{\Phi}_{F i}+A^{-1} \ln \hat{\tilde{\mathbf{e}}}_{i}
\end{aligned}
$$

Exponentiating the system and assuming unobservables are constant across equilibria yields ${ }^{61}$

$$
\hat{y}_{i h}=\hat{\Phi}_{R i}^{\beta_{R, h}} \hat{\Phi}_{F i}^{\beta_{F, h}}\left[A^{-1} \hat{\boldsymbol{\lambda}}\right]_{h} \text { for } h=1, \ldots, K
$$

Relative changes across the city are given by

$$
\hat{\hat{y}}_{i h}=\hat{\hat{\Phi}}_{R i}^{\beta_{R, h}} \hat{\hat{\Phi}}_{F i}^{\beta_{F, h}}
$$

where

$$
\begin{aligned}
& \hat{\hat{\Phi}}_{R i}=\rho_{R} \sum_{j} \pi_{i j}^{R} \frac{\hat{\hat{L}}_{F j}}{\hat{\hat{\Phi}}_{F j}} \hat{\kappa}_{i j} \\
& \hat{\hat{\Phi}}_{F i}=\rho_{F} \sum_{j} \pi_{i j}^{F} \frac{\hat{\hat{L}}_{R j}}{\hat{\hat{\Phi}}_{R j}} \hat{\kappa}_{j i}
\end{aligned}
$$

where $\rho_{R}=\left[\prod_{i} \sum_{j} \pi_{i j}^{R} \hat{\kappa}_{i j} \frac{\hat{\hat{L}}_{F j}}{\hat{\Phi}_{F j}}\right]^{-1 / N}, \rho_{F}=\left[\prod_{i} \sum_{j} \pi_{i j}^{F} \hat{\kappa}_{j i} \frac{\hat{\hat{L}}_{R j}}{\hat{\Phi}_{R j}}\right]^{-1 / N}$, and $\pi_{i j}^{R}=\frac{\kappa_{i j} \frac{L_{F j}}{\Phi_{F j}}}{\sum_{j} \kappa_{i j} \frac{L_{F j}}{\Phi_{F j}}}, \pi_{i j}^{F}=\frac{\kappa_{j i} \frac{L_{R j}}{\Phi_{R j}}}{\sum_{j} \kappa_{j i} \frac{L_{R j}}{\Phi_{R j}}}$ can be solved using the to-scale versions of the CMA terms. Taken together, this is $K+2$ equations in the $K+2$ unknowns $\left\{\hat{\hat{y}}_{i h}\right\}_{h=1}^{K}, \hat{\hat{\Phi}}_{R i}, \hat{\hat{\Phi}}_{F i}$. Thus we have shown that parts (i) and (ii) apply to any model of this class. Appendix C. 6 provides explicit examples of models that fall under it.

C.8.2 Proof of Proposition 2

This proof considers a slight modification of the baseline model, in which individuals (i) have separate productivity shocks over workplace locations and preference shocks over residential locations, (ii) own an equal share of the housing stock and (iii) face a labor income tax of $t_{i j}=1 /(1+\theta)$.

The reason for these changes is that efficiency requires lump sum redistribution to workers (i.e. part of income that does not depend on workplace location). In the decentralized equilibrium of the model in Section C.1, income always depends on workplace location. Even if total income is $y_{j}=w_{j}+e$ for some lump sum transfer e and productivity shocks are over pairs $i j$, then total income is $y_{j} / d_{i j} \times E\left[\epsilon_{i j} \mid\right.$ Choose $\left.i j\right]$. Since this average productivity term depends on the choice of workplace location, there is no longer a location-independent portion of income.

Despite the slight difference between the model used in this proof and the baseline model, simulations that feed

[^9]\[

$$
\begin{aligned}
& \hat{\Phi}_{R i}=\hat{c} \sum_{j} \pi_{i j}^{R} \hat{\kappa}_{i j} \frac{\hat{L}_{F j}}{\hat{\Phi}_{F j}} \\
& \hat{\Phi}_{F j}=\hat{c} \sum_{i} \pi_{i j}^{F} \hat{\kappa}_{j i} \frac{\hat{L}_{R i}}{\hat{\Phi}_{R i}}
\end{aligned}
$$
\]

where $\pi_{i j}^{R}=\frac{\kappa_{i j} \frac{L_{F j}}{\Phi_{F j}}}{\sum_{j} \kappa_{i j} \frac{L_{F j}}{\Phi_{F j}}}, \pi_{i j}^{F}=\frac{\kappa_{j i} \frac{L_{R j}}{\Phi_{R j}}}{\sum_{j} \kappa_{j i} \frac{L_{R j}}{\Phi_{R j}}}$ can be solved using the to-scale versions of the CMA terms. So unique to-scale values for the changes in CMA terms are pinned down given values $\hat{L}_{R i}, \hat{L}_{F i}$, yielding the full system of equations that characterizes the equilibrium. Uniqueness (to-scale) of this solution in changes follows the same argument as for the solution in levels, given they have the same functional form.
in a very small shock (a constant $d \ln d_{i j}=0.00001 \forall i j$) into an efficient version of the baseline model (i.e. where $\mu_{U}=\mu_{A}=0$) confirmed the expression for the welfare elasticity derived in the proof holds in the baseline model too.

Equilibrium Equations. The equilibrium equations in this model are

$$
\begin{aligned}
& L_{R i}=\bar{L}\left(\frac{u_{i} \bar{y}_{i} r_{R i}^{\beta-1}}{\bar{U} d_{i j}}\right)^{\theta} \\
& L_{i j}=L_{R i} \frac{\left(\left(1-t_{i j}\right) w_{j} / d_{i j}\right)^{\theta}}{\Phi_{R i}} \\
& \tilde{L}_{F j}=\sum_{i} L_{i j} \bar{\epsilon}_{i j} \\
& w_{i} \tilde{L}_{F i}=\alpha p_{i}^{1-\sigma} \beta Y \\
& p_{i}=\tilde{\alpha} \frac{w_{i}^{\alpha} r_{F i}^{1-\alpha}}{A_{i}} \\
& r_{R i}=\frac{1-\beta}{H_{R i}} L_{R i} \bar{y}_{i} \\
& r_{F i} H_{F i}=(1-\alpha) p_{i}^{1-\sigma} \beta Y \\
& \bar{U}=\left[\sum_{i}\left(u_{i} \bar{y}_{i} r_{R i}^{\beta-1} / d_{i j}\right)^{\theta}\right]^{1 / \theta} \\
& \bar{y}_{i}=\Phi_{R i}^{1 / \theta}+e \\
& \Phi_{R i}=\sum_{j}\left(\left(1-t_{i j}\right) w_{j} / d_{i j}\right)^{\theta} \\
& e=\frac{1}{\bar{L}}\left[(1-\alpha \beta) Y+\sum_{i j} t_{i j} L_{i j} \bar{w}_{i j}\right] \\
& \bar{w}_{i j}=\Phi_{R i}^{1 / \theta}
\end{aligned}
$$

where $Y=\sum_{i} Y_{i}$ is aggregate expenditure, $\tilde{\alpha} \equiv \alpha^{-\alpha}(1-\alpha)^{-(1-\alpha)}$ is a constant, and $(1-\alpha \beta) Y=(1-\beta) Y+\beta(1-\alpha) Y$ is total expenditure on residential and commercial floorspace. Note that the preference draw $\nu_{i}(\omega)$ and productivity draw $\epsilon_{j}(\omega)$ are both drawn from a Frechet distribution with unit scale and shape $\theta>1$, and workers choose their residential location before deciding where to work.

Planner Problem. The planner knows the distribution of individual heterogeneity, but not their specific draws. She announces a policy where workers receive some amount of the consumption and housing good per unit of effective labor supply based on where they work, as well as an amount based on where they live. In particular, the policy for someone who chooses to live in i and work in j with productivity ϵ is

$$
\begin{aligned}
c_{i j}(\epsilon) & =\tilde{c}_{i j} \frac{\epsilon}{d_{i j}}+\bar{c}_{i} \\
h_{i j}(\epsilon) & =\tilde{h}_{i j} \frac{\epsilon}{d_{i j}}+\bar{h}_{i} .
\end{aligned}
$$

Given these policies, individuals make free decisions about where to live and work. Utility from each choice is
$U_{i j}(\epsilon, \nu)=u_{i}\left(\frac{\tilde{c}_{i j}}{d_{i j}} \epsilon+\bar{c}_{i}\right)^{\beta}\left(\frac{\tilde{h}_{i j}}{d_{i j}} \epsilon+\bar{h}_{i}\right)^{1-\beta} \nu$. Since this is non-linear in ϵ, I constrain the planner to policies that make the two transfers proportional to one another (with a constant of proportionality that can vary by residential location), i.e. $\tilde{h}_{i j}=\iota_{i} \tilde{c}_{i j}$ and $\bar{c}_{i}=\iota_{i} \bar{h}_{i}$. Then $U_{i j}(\epsilon, \nu)=u_{i} \iota_{i}^{1-\beta} c_{i j}(\epsilon) \nu$.

The planner then chooses the consumption policies and supply of residents and workers to maximize utility subject to the following technological constraints

- Goods Feasibility: $\left(\sum_{k} c_{k i j}^{\frac{\sigma-1}{i}}\right)^{\frac{\sigma}{\sigma-1}}=L_{i j}\left(\tilde{c}_{i j} \epsilon_{i j}+\bar{c}\right)$, where $c_{k i j}$ is the amount of variety k consumed by individuals choosing $i j$. (Each variety is a freely traded good from a particular location, i.e. Armington without trade costs).
- Residential Housing Feasibility: $H_{R i}=\sum_{j} L_{i j} \iota_{i}\left(\tilde{c}_{i j} \epsilon_{i j}+\bar{c}\right)$
- Commercial Floorspace Feasibility: $\tilde{H}_{F i}=H_{F i}$
- Production Technology: $A_{i} \tilde{L}_{i}^{\alpha} \tilde{H}_{F i}^{1-\alpha}=\sum_{r s} c_{i r s}$
- Effective Labor Feasibility: $\tilde{L}_{j}=\sum_{i} L_{i j} \epsilon_{i j}$
- Worker Mobility: $L_{R i}=\bar{L}\left(\frac{u_{i} i_{i}^{1-\beta}\left(\Phi_{R i}^{1 / \theta}+\bar{c}\right)}{U}\right)^{\theta}$.
- Commuting Mobility: $L_{i j}=\frac{\left(w_{j} / d_{i j}\right)^{\theta}}{\Phi_{R i}} L_{R i}$
- Residential feasibility: $\bar{L}=\sum_{i} L_{R i}$
- Effective Labor Technology: $\bar{\epsilon}_{i j}=\frac{\Phi_{R i}^{1 / \theta} d_{i j}}{w_{j}}$
- CMA Definition: $\Phi_{R i}=\sum_{j}\left(\tilde{c}_{i j} / d_{i j}\right)^{\theta}$

The Lagrangian is

$$
\begin{aligned}
\mathcal{L} & =\bar{U} \\
& +\sum_{i j} v_{i j}\left(\left(\sum_{k} c_{k i j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}-L_{i j}\left(\tilde{c}_{i j} \epsilon_{i j}+\bar{c}_{i}\right)\right)+\sum_{i} \kappa_{i}\left(H_{R i}-\sum_{j} L_{i j} \iota_{i}\left(\tilde{c}_{i j} \epsilon_{i j}+\bar{c}_{i}\right)\right) \\
& +\sum_{i} \lambda_{i}\left(A_{i} \tilde{L}_{i}^{\alpha} \tilde{H}_{F i}^{1-\alpha}-\sum_{r s} c_{i r s}\right)+\sum_{j} \xi_{j}\left(\sum_{i} \bar{\epsilon}_{i j} L_{i j}-\tilde{L}_{j}\right) \\
& +\sum_{i} \delta_{i}\left(H_{F i}-\tilde{H}_{F i}\right) \\
& +\sum_{i} \rho_{i}\left(\left(\frac{L_{R i}}{\bar{L}}\right)^{-1 / \theta} u_{i} l_{i}^{1-\beta}\left(\Phi_{R i}^{1 / \theta}+\bar{c}_{i}\right)-\bar{U}\right) \\
& +\sum_{i j} \psi_{i j}\left(\frac{\left(\tilde{c}_{i j} / d_{i j}\right)^{\theta}}{\Phi_{R i}} L_{R i}-L_{i j}\right) \\
& +\sum_{i} \tau_{i}\left(\sum_{j}\left(\tilde{c}_{i j} / d_{i j}\right)^{\theta}-\Phi_{R i}\right) \\
& +\sum_{i j} \phi_{i j}\left(\frac{\Phi_{R i}^{1 / \theta} d_{i j}}{\tilde{c}_{i j}} \frac{1}{d_{i j}}-\bar{\epsilon}_{i j}\right)+\mu\left(\bar{L}-\sum_{i} L_{R i}\right)
\end{aligned}
$$

The first order conditions with respect to the choice variables $\left\{\bar{U}, \tilde{c}_{i j}, \iota_{i}, \bar{c}_{i}, c_{k i j}, L_{i j}, L_{R i}, \tilde{L}_{F i}, \tilde{H}_{F i}, \bar{\epsilon}_{i j}, \Phi_{R i}\right\}$ are

$$
\begin{align*}
\left(v_{i j}+\kappa_{i} \iota_{i}\right) \tilde{c}_{i j} \bar{\epsilon}_{i j} L_{i j} & =L_{i j}\left(\theta \psi_{i j}+\theta \tau_{i} \frac{\Phi_{R i}}{L_{R i}}-\frac{\phi_{i j} \bar{\epsilon}_{i j}}{L_{i j}}\right) \tag{c}\\
\sum_{j}\left(\tilde{c}_{i j} \epsilon_{i j}+\bar{c}_{i}\right) \kappa_{i} L_{i j} & =(1-\beta) \frac{\rho_{i} \bar{U}}{\iota_{i}} \tag{i}\\
\sum_{j} L_{i j}\left(v_{i j}+\kappa_{i} \iota_{i}\right) & =\rho_{i} \frac{\bar{U}}{\Phi_{R i}^{1 / \theta}+\bar{c}_{i}} \tag{c}\\
\lambda_{k} & =\nu_{i j}\left(\frac{c_{k i j}}{C_{i j}}\right)^{-\frac{1}{\sigma}} \tag{kij}\\
\delta_{i} & =(1-\alpha) \lambda_{i} A_{i}\left(\frac{\tilde{L}_{i}}{\tilde{H}_{F i}}\right)^{\alpha} \tag{Fi}\\
\xi_{j} \bar{\epsilon}_{i j} & =\left(v_{i j}+\kappa_{i} L_{i}\right)\left(\tilde{c}_{i j} \bar{\epsilon}_{i j}+\bar{c}\right)+\psi_{i j} \tag{ij}\\
\sum_{j} \psi_{i j} L_{i j} & =\frac{1}{\theta} \frac{\rho_{i} \bar{U}}{L_{R i}}+\mu \tag{Ri}\\
\phi_{i j}+L_{i j} \tilde{c}_{i j}\left(\nu_{i j}+\kappa_{i} \iota_{i}\right) & =\xi_{j} L_{i j} \tag{ij}\\
\tau_{i} & =\frac{1}{\theta} \frac{\bar{U}}{\Phi_{R i}} \frac{\Phi_{R i}^{1 / \theta}}{\Phi_{R i}^{1 / \theta}+\bar{c}}-\sum_{j} \psi_{i j} \frac{L_{i j}}{\Phi_{R i}}+\sum_{j} \frac{1}{\theta} \phi_{i j} \frac{\epsilon_{i j}}{\Phi_{R i}} \tag{Ri}\\
\xi_{i} & =\alpha \lambda_{i} A_{i}\left(\frac{H_{F i}}{\tilde{L}_{i}}\right)^{1-\alpha} \tag{L}\\
1 & =\sum_{i} \rho_{i} \tag{U}
\end{align*}
$$

and each of the constraint holds (to provide a condition for each multiplier).
Consumption and Housing. Define $\tilde{x}_{i j}=v \tilde{c}_{i j}+\kappa_{i} \tilde{h}_{i j}=\tilde{c}_{i j}\left(v+\kappa_{i} \iota_{i}\right)$ to be expenditure per unit of effective labor (as shown below, $\left.v_{i j}=v \forall i j\right)$. Likewise define $\bar{x}_{i}=\bar{c}_{i}\left(v+\kappa_{i} \iota_{i}\right)$ to be the expenditure on the fixed good so that $\bar{c}_{i}=\bar{x}_{i} /\left(v+\kappa_{i} \iota_{i}\right)$. Putting these into the mobility condition yield

$$
\bar{U}=\left(\frac{L_{R i}}{\bar{L}}\right)^{-1 / \theta} u_{i} \frac{\iota_{i}^{1-\beta}}{\left(v+\kappa_{i} \iota_{i}\right)}\left(\tilde{\Phi}_{R i}^{1 / \theta}+\bar{x}_{i}\right),
$$

where $\tilde{\Phi}_{R i}^{1 / \theta} \equiv\left[\sum_{s}\left(\tilde{x}_{i s} / d_{i j}\right)^{\theta}\right]^{1 / \theta}$. To solve for ι_{i}, from its FOC we obtain

$$
\frac{\kappa_{i} \iota_{i}}{v+\kappa_{i} \iota_{i}}=(1-\beta) \frac{\rho_{i} \bar{U}}{\sum_{j}\left(x_{i j} \bar{\epsilon}_{i j}+\bar{x}_{i}\right) L_{i j}} .
$$

To solve this, we need a value for ρ_{i}. From the FOC for \bar{c}_{i},

$$
L_{R i}=\rho_{i} \frac{\bar{U}}{\tilde{\Phi}_{R i}^{1 / \theta}+\bar{x}_{i}} .
$$

The definition of $\bar{\epsilon}_{i j}$ yields $\tilde{x}_{i j} \bar{\epsilon}_{i j}=\tilde{\Phi}_{R i}^{1 / \theta}$ so that average income is constant across workplace locations within a residence location. Using this to simplify the denominator in the FOC for ι_{i}, combining these two conditions gives
$v+\kappa_{i} \iota_{i}=v / \beta$. Substituting this into $\tilde{c}_{i j}=\tilde{x}_{i j} /\left(v+\kappa_{i} \iota_{i}\right), \bar{c}_{i}=\bar{x}_{i} /\left(v+\kappa_{i} \iota_{i}\right), \tilde{h}_{i j}=\iota_{i} \tilde{c}_{i j}$ and $\bar{h}_{i}=\iota_{i} \bar{c}_{i}$ yields

$$
\begin{aligned}
\tilde{c}_{i j} & =\beta \tilde{x}_{i j} / v \\
\tilde{h}_{i j} & =(1-\beta) \tilde{x}_{i j} / \kappa_{i} \\
\bar{c}_{i} & =\beta \bar{x}_{i} / v \\
\bar{h}_{i} & =(1-\beta) \bar{x}_{i} / \kappa_{i} .
\end{aligned}
$$

Plugging this into the expression for utility gives residential supply

$$
L_{R i} \propto \bar{L}\left(\frac{u_{i} \bar{y}_{i} \kappa_{i}^{\beta-1}}{\bar{U}}\right)^{\theta}
$$

where $\bar{y}_{i}=\tilde{x}_{i j} \bar{\epsilon}_{i j}+\bar{x}_{i}=\tilde{\Phi}_{R i}^{1 / \theta}+\bar{x}_{i}$ is average income of residents in i. Substituting this into the expression for residential feasibility provides an alternative expression for average welfare

$$
\bar{U} \propto\left[\sum_{i}\left(u_{i} \bar{y}_{i} \kappa_{i}^{\beta-1}\right)^{\theta}\right]^{1 / \theta}
$$

Residential Floorspace. Using these results, the floorspace market clearing condition implies

$$
H_{R i}=(1-\beta) \frac{L_{R i} \bar{y}_{i}}{\kappa_{i}}
$$

Production. The FOC for $c_{k i j}$ implies $c_{k i j}=\left(\frac{\lambda_{k}}{v_{i j}}\right)^{-\sigma} C_{i j}$, which plugged into the definition of $C_{i j}=\left(\sum_{k} c_{k i j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$ yields $v_{i j}=v=\left(\sum_{k} \lambda_{k}^{1-\sigma}\right)^{\frac{1}{1-\sigma}} \forall i, j$. The market clearing condition for goods implies

$$
A_{i} \tilde{L}_{i}^{\alpha} H_{F i}^{1-\alpha}=\lambda_{i}^{-\sigma} v^{\sigma-1} \beta Y
$$

where $Y \equiv \sum_{i} L_{R i} \bar{y}_{i}$ is aggregate expenditure. Combining the FOC for labor and commercial floorspace gives $H_{F i}=\frac{\alpha}{1-\alpha} \frac{\xi_{i}}{\delta_{i}} \tilde{L}_{i}$, and substituting this back into the FOC yields both factor demands and an expression for λ_{i}

$$
\begin{aligned}
\xi_{i} \tilde{L}_{i} & =\alpha \lambda_{i}^{1-\sigma} v^{\sigma-1} \beta Y \\
\delta_{i} H_{F i} & =(1-\alpha) \lambda_{i}^{1-\sigma} v^{\sigma-1} \beta Y \\
\lambda_{i} & =\tilde{\alpha} \frac{\xi_{i}^{\alpha} \delta_{i}^{1-\alpha}}{A_{i}} .
\end{aligned}
$$

Labor Supply. Finally we need to solve the spatial mobility condition, i.e. the FOC for $L_{i j}$. First, note the condition for $L_{R i}$ implies $\psi_{i j}=\psi_{i}$. The FOC for $L_{R i}$ and $L_{i j}$ can then be combined to get

$$
\xi_{j} \bar{\epsilon}_{i j}=\tilde{x}_{i j} \bar{\epsilon}_{i j}+\bar{x}_{i}+\frac{1}{\theta} \frac{\rho_{i} \bar{U}}{L_{R i}}+\mu
$$

Substituting in the value for ρ_{i} from above gives

$$
\tilde{x}_{i j} \bar{\epsilon}_{i j}+\bar{x}_{i}=\frac{\theta}{\theta+1} \xi_{j} \bar{\epsilon}_{i j}-\frac{\theta}{\theta+1} \mu
$$

Note this implies that expenditure per effective unit of labor depends only on workplace location ($\tilde{x}_{i j}=\frac{\theta}{\theta+1} \xi_{j}$), and expenditure per worker is constant across residential locations ($\bar{x}_{i}=-\frac{\theta}{\theta+1} \mu$). Substituting the expression for $\tilde{c}_{i j}$ into the commuting constraint gives

$$
L_{i j}=L_{R i} \frac{\left(\xi_{j} / d_{i j}\right)^{\theta}}{\sum_{s}\left(\xi_{s} / d_{i s}\right)^{\theta}}
$$

Taking Stock. The solution to the planner's problem is the vector $\left(\bar{U}, \kappa_{i}, v, \xi_{i}, \delta_{i}, \lambda_{i}, L_{i j}, L_{R i}\right)$ that satisfies

$$
\begin{aligned}
L_{R i} & \propto \bar{L}\left(\frac{u_{i} \bar{y}_{i} \kappa_{i}^{\beta-1}}{\bar{U} d_{i j}}\right)^{\theta} \\
L_{i j} & =L_{R i} \frac{\left(\xi_{j} / d_{i j}\right)^{\theta}}{\sum_{s}\left(\xi_{s} / d_{i s}\right)^{\theta}} \\
\tilde{L}_{F j} & =\sum_{i} L_{i j} \bar{\epsilon}_{i j} \\
\xi_{i} \tilde{L}_{i} & =\alpha \lambda_{i}^{1-\sigma} v^{\sigma-1} \beta Y \\
\lambda_{i} & =\tilde{\alpha} \frac{\xi_{i}^{\alpha} \delta_{i}^{1-\alpha}}{A_{i}} \\
H_{R i} & =(1-\beta) \frac{L_{R i} \bar{y}_{i}}{\kappa_{i}} \\
\delta_{i} H_{F i} & =(1-\alpha) \lambda_{i}^{1-\sigma} v^{\sigma-1} \beta Y \\
\bar{U} & \propto\left[\sum_{i}\left(u_{i} \bar{y}_{i} \kappa_{i}^{\beta-1}\right)^{\theta}\right]^{1 / \theta} \\
\bar{y}_{i} & =\Phi_{R i}^{1 / \theta}-\frac{\theta}{\theta+1} \mu \\
\Phi_{R i} & =\sum_{j}\left(\frac{\theta}{\theta+1} \xi_{j} / d_{i j}\right)^{\theta}
\end{aligned}
$$

where $\bar{y}_{i}=\Phi_{R i}^{1 / \theta}-\frac{\theta}{\theta+1} \mu$ and $\Phi_{R i}=\sum_{j}\left(\frac{\theta}{\theta+1} \xi_{j} / d_{i j}\right)^{\theta}$ are functions of these variables and the planner's multiplier on the residential feasibility constraint μ. This is the same set of equations as the decentralized equilibrium with $\left(\kappa_{i}, v, \xi_{i}, \delta_{i}, \lambda_{i}, \tilde{x}_{i j}, \mu\right)=\left(r_{R i}, P, w_{i}, r_{F i}, p_{i}, \frac{\theta}{1+\theta} w_{j},-\frac{\theta}{1+\theta} e\right)$, i.e. when $t_{i j}=1 /(1+\theta)$. Therefore under this condition, any competitive equilibrium also solves the social planner's solution and is efficient.

Welfare Elasticity. Using the envelope theorem, the change in welfare to a change in commute costs is

$$
\begin{aligned}
\frac{\partial \bar{U}}{\partial d_{i j}} & =-\frac{\theta \psi_{i j} L_{i j}}{d_{i j}}-\theta \frac{\tau_{i} \Phi_{R i}}{d_{i j}} \frac{L_{i j}}{L_{R i}} \\
\Rightarrow \frac{\partial \ln \bar{U}}{\partial \ln d_{i j}} & =-\frac{L_{i j}\left(\theta \psi_{i j}+\theta \frac{\tau_{i} \Phi_{R i}}{L_{R i}}\right)}{\bar{U}}
\end{aligned}
$$

Combining the FOC for $\tilde{c}_{i j}$ and $\bar{\epsilon}_{i j}$ give $\xi_{j} \bar{\epsilon}_{i j}=\theta \psi_{i j}+\theta \tau_{i} \frac{\Phi_{R i}}{L_{R i}}$. Defining $w_{i j} \equiv \xi_{j} \bar{\epsilon}_{i j}$ to be average labor income for commuters along $i j$, this simplifies to

$$
\frac{\partial \ln \bar{U}}{\partial \ln d_{i j}}=-\frac{w_{i j} L_{i j}}{\bar{U}}
$$

Substituting the expression for ρ_{i} into the FOC for \bar{U} implies $\bar{U}=\sum_{i} L_{R i} \bar{y}_{i}$. From the adding up condition we must have

$$
\underbrace{\sum_{i j} L_{i j} \bar{y}_{i}}_{\text {Total Income }}=\underbrace{\sum_{i j} L_{i j} w_{i j}}_{\text {Labor Income }}+\underbrace{(1-\beta) \sum_{i j} L_{i j} \bar{y}_{i}}_{\text {Income from Res Floorspace }}+\underbrace{\beta(1-\alpha) \sum_{i j} L_{i j} \bar{y}_{i}}_{\text {Income from Comm Floorspace }}=\frac{1}{\alpha \beta} \sum_{i j} L_{i j} w_{i j}
$$

Thus $\bar{U}=\frac{1}{\alpha \beta} \sum_{i j} L_{i j} w_{i j}$ and

$$
\frac{\partial \ln \bar{U}}{\partial \ln d_{i j}}=-\alpha \beta \frac{w_{i j} L_{i j}}{\sum_{r s} w_{r s} L_{r s}} .
$$

Adding up to compute the change in utility $d \ln \bar{U}$ to a vector of changes in commute costs $\left\{d \ln d_{i j}\right\}_{i j}$ gives the result in the proposition. Note that the parameters α, β account for the fact that some of the gains go to factors other than labor, but these equilibrium price effects do not matter to an infinitesimal change in commute costs and thus do not impact welfare.

C.8.3 Proof of Proposition 3

Part 1: Wages

To construct the system of equations used for solving for wages, I collect the expressions for supply and demand for workers. Labor supply $L_{F j g}=w_{j g}^{\theta_{g}} \Phi_{F j g}$ can be rearranged as

$$
w_{j g}=L_{F j g}^{\frac{1}{\theta_{g}}}\left[\sum_{i, a} \frac{L_{R i a g}}{\sum_{k} w_{k g}^{\theta_{g}} d_{i k a}^{-\theta_{g}}} d_{i j a}^{-\theta_{g}}\right]^{-\frac{1}{\theta_{g}}}
$$

This is a system of equations in $w_{j g}$ given parameters and data $\left\{L_{\text {Riag }}, d_{i j a}, L_{F j g}\right\}$. The problem is that I do not observe employment by group, but only employment by industry $L_{F j s}$. However, I can combine this data with the structure of the model to find employment by group for each location.

From CES demand for each group's labor, the share of any industry's (effective) employment by any group g is given by

$$
\frac{\tilde{L}_{F j g s}}{\tilde{L}_{F j s}}=\frac{\left(w_{j g} / \alpha_{s g}\right)^{-\sigma}}{\sum_{h}\left(w_{j h} / \alpha_{s h}\right)^{-\sigma}} .
$$

Summing this over industries yields total employment by group in a location

$$
\tilde{L}_{F j g}=\sum_{s} \frac{\left(w_{j g} / \alpha_{s g}\right)^{-\sigma}}{\sum_{h}\left(w_{j h} / \alpha_{s h}\right)^{-\sigma}} \tilde{L}_{F j s}
$$

It remains to express effective units of labor supply in terms of observed data and wages.
Start by decomposing $\tilde{L}_{F j s}$ in terms of data and wages as follows. First, compute the average productivity of workers in j

$$
\bar{\epsilon}_{j g}=E[\epsilon \mid g \text {, Choose } j]=\sum_{i, o} E[\epsilon \mid g \text {, Choose } j \text { from }(i, o)] \operatorname{Pr}(i, o \mid j, g)=\sum_{i, o} \gamma_{g}\left(\frac{\tilde{T}_{g}}{\pi_{j \mid i o g}}\right)^{\frac{1}{\theta_{g}}} \frac{1}{d_{i j o}} \operatorname{Pr}(i, o \mid j, g)
$$

Next, break down the probability as

$$
\operatorname{Pr}(i, o \mid j, g)=\pi_{i o \mid j g}=\frac{\pi_{j \mid i o g} \pi_{i o g}}{\sum_{r, u} \pi_{j \mid r u g} \pi_{r u g}}=\frac{\pi_{j \mid i o g} L_{R i o g}}{\sum_{r, u} \pi_{j \mid r u g} L_{R r u g}}
$$

So

$$
\bar{\epsilon}_{j g}=T_{g} \sum_{i, o} \pi_{j \mid i o g}^{-\frac{1}{\theta_{g}}} \frac{1}{d_{i j o}} \frac{\pi_{j \mid i o g} L_{R i o g}}{\sum_{r, u} \pi_{j \mid r u g} L_{R r u g}}
$$

Next, note that

$$
\bar{\epsilon}_{j s}=\sum_{g} \bar{\epsilon}_{j g} \pi_{g \mid j s}=\sum_{g} \bar{\epsilon}_{j g} \frac{L_{F j g s}}{L_{F j s}}=\sum_{g} \bar{\epsilon}_{j g} \frac{\left(w_{j g} / \alpha_{s g}\right)^{-\sigma} / \bar{\epsilon}_{j g}}{\sum_{h}\left(w_{j h} / \alpha_{s h}\right)^{-\sigma} / \bar{\epsilon}_{j h}}
$$

Putting these results together, we have that

$$
L_{F j g}=\frac{\tilde{L}_{F j g}}{\bar{\epsilon}_{j g}}=\sum_{s} \frac{\left(w_{j g} / \alpha_{s g}\right)^{-\sigma}}{\sum_{h}\left(w_{j h} / \alpha_{s h}\right)^{-\sigma}} \frac{\bar{\epsilon}_{j s}}{\bar{\epsilon}_{j g}} L_{F j s}
$$

Substituting this result back into the expression for labor supply, we find that wages are the fixed point of the system $w_{g}=F_{w g}\left(w_{g} ; L_{R g}, L_{F s}\right)$ where the operator $F_{w g}$ is defined to have the j-th element

$$
\left.\begin{array}{rl}
F_{w g}\left(w_{g} ; L_{F s}, L_{R g}\right)_{j} & =\left[\sum_{s} \frac{\left(w_{j g} / \alpha_{s g}\right)^{-\sigma}}{\sum_{h}\left(w_{j h} / \alpha_{s h}\right)^{-\sigma}} \bar{\epsilon}_{j s}\right. \\
\bar{\epsilon}_{j g} & L_{F j s}
\end{array}\right]^{\frac{1}{\theta_{g}}}\left[\sum_{i, o} \frac{L_{R i o g}}{\sum_{k} w_{k g}^{\theta_{g}} d_{i k o}^{-\theta_{g}}} d_{i j o}^{-\theta_{g}}\right]^{-\frac{1}{\theta_{g}}}
$$

Note that the operator $F_{w g}$ has the following properties:

- Monotonicity. Transform the system into log-space. From Euler's theorem since F_{1} is homogenous of degree zero we know for any vector $d \ln w$ we have that

$$
\sum_{k, h} \frac{\partial F_{1 g}}{\partial \ln w_{k h}}=0
$$

so the total differential of $F_{1 g}$ to a vector of wage changes is zero. The second term is monotonic in w, which is a positive transformation of $\ln w$. Thus, the operator $F_{w g}$ is a strictly increasing function of $\ln w$. By the chain rule, $F_{w g}$ is a strictly increasing function of w.

- Homogeneity. Consider first $F_{1 w g}$. The first part $\frac{\left(w_{j g} / \alpha_{s g}\right)^{-\sigma}}{\sum_{h}\left(w_{j h} / \alpha_{s h}\right)^{-\sigma}}$ is homogenous of degree zero in wages. From the definition of $\bar{\epsilon}_{j s}$ and $\bar{\epsilon}_{j g}$ we see that these too are homogenous of degree zero in wages. Therefore $F_{1 w g}$ is homogenous of degree zero in wages. Next, we see that $F_{2 w g}$ is homogenous of degree one in wages, so that $F_{w g}$ is homogenous of degree one.

Therefore, by the results in Fujimoto and Krause (1985) there exists a unique (to-scale) solution to the system $w_{g}=$ $F_{w g}\left(w_{g} ; L_{F s}, L_{R g}\right)$.

Part 2: Remaining Unobservables

Given wages, $\Phi_{\text {Riag }}, W_{i s}$ can be computed. The total wage bill is obtained from

$$
\begin{aligned}
W_{j s} N_{j s} & =\sum_{g} w_{j g} \tilde{L}_{F j g s} \\
& =\sum_{g} w_{j g} \frac{\left(w_{j g} / \alpha_{s g}\right)^{-\sigma}}{\sum_{h}\left(w_{j h} / \alpha_{s h}\right)^{-\sigma}} L_{F j s} \bar{\epsilon}_{j s}
\end{aligned}
$$

This allow me to obtain sales from $\alpha_{s} X_{j s}=W_{j s} N_{j s}$. With this in hand, productivity comes from

$$
X_{j s}=\left(\frac{W_{j s}^{\alpha_{s}} r_{F j}^{1-\alpha_{s}}}{A_{j s}}\right)^{1-\varsigma} X
$$

since X is also observed using $\Phi_{\text {Riag }}$.
Lump sum income from the housing stock is recovered directly from $\pi=\bar{L}^{-1} \sum_{i}\left(r_{R i} H_{R i}+r_{F i} H_{F i}\right)$. Amenities are retrieved from the resident supply condition

$$
\begin{aligned}
L_{R i a g} & =\lambda_{L g}\left(u_{i a g}\left(T_{g} \Phi_{R i a g}^{1 / \theta}-\bar{h} r_{R i}-p_{a} a+\pi\right) r_{R i}^{\beta-1}\right)^{\eta_{g}} \\
\Rightarrow u_{i a g} & =\frac{\left(L_{R i a g} / \lambda_{L g}\right)^{1 / \eta_{g}} r_{R i}^{1-\beta}}{\left(T_{g} \Phi_{R i a g}^{1 / \theta}-\bar{h} r_{R i}-p_{a} a+\pi\right)}
\end{aligned}
$$

To solve for unobservables on the housing side of the model, I need to introduce a new pair of location characteristics omitted in the main paper for notational brevity. In particular, the floorspace market clearing condition $r_{R i}=\frac{E_{i}}{H_{R i}}$ will not necessarily hold at the values for data and estimated wages (where E_{i} is total expenditure on housing from residents of i). I therefore introduce an additional unobservable so that $H_{R i}=\tilde{H}_{R i} \xi_{R i}$, where $\tilde{H}_{R i}$ are physical units of floorspace and $\xi_{R i}$ are effective units (or housing quality). These unobservables can be solved for from the housing market clearing condition $\xi_{R i}=\frac{E_{i}}{\tilde{H}_{R i} r_{R i}}$. Similar residuals for effective units of commercial floorspace $\xi_{F i}$ are obtained from the commercial floorspace market clearing condition $\xi_{F i}=\frac{\sum_{s}\left(1-\alpha_{s}\right) X_{i s}}{\tilde{H}_{F i} r_{F i}}$, and total floorspace supplies are given by $H_{R i}=\tilde{H}_{R i} \xi_{R i}$ and $H_{F i}=\tilde{H}_{F i} \xi_{F i}$.

Finally, it remains to solve for the land use restrictions τ_{i}. These can be identified from

$$
\left(1-\tau_{i}\right)=\frac{r_{R i} \xi_{R i}}{r_{F i} \xi_{F i}}
$$

for locations with mixed land use. For locations with single land use, the wedges are not identified but these are rationalized by zero productivities (for all sectors) or zero amenities (for all worker groups) and thus will remain single use across counterfactuals. ${ }^{62}$

[^10]
C.8.4 Average Income in Single Group Model

Floorspace Market Clearing and Average Income. Average income of residents of i is

$$
\begin{aligned}
\bar{y}_{i} & =\sum_{j} \pi_{j \mid i}\left(w_{j} / d_{i j}\right) E\left[\epsilon_{i j}(\omega) \mid \omega \text { chooses }(i, j)\right]=\frac{1}{\pi_{i}} \sum_{j} \pi_{i j}^{\frac{\theta-1}{\theta}}\left(w_{j} / d_{i j}\right)=\frac{1}{\pi_{i}} \bar{U}^{-(\theta-1)}\left(u_{i} r_{R i}^{\beta-1}\right)^{\theta-1} \sum_{j}\left(w_{j} / d_{i j}\right)^{\theta} \\
& =\bar{L} \bar{U}^{-(\theta-1)} \frac{\left(u_{i} r_{R i}^{\beta-1}\right)^{\theta-1} \Phi_{R i}}{L_{R i}} \\
& =\bar{U} \frac{1}{u_{i} r_{R i}^{\beta-1}} \\
& =\bar{U} \frac{1}{\left(L_{R i} / \Phi_{R i} \bar{L} \bar{U}^{-\theta}\right)^{\frac{1}{\theta}}} \\
& =\Phi_{R i}^{1 / \theta} L_{R i}^{-1 / \theta} .
\end{aligned}
$$

Total expenditure by residents in i is then simply $E_{i}=\bar{y}_{i} L_{R i}=\Phi_{R i}^{1 / \theta} L_{R i}^{\frac{\theta-1}{\theta}}$, the expression in the floorspace market clearing condition.

C. 9 Bootstrap

To incorporate uncertainty from the parameter estimates into the welfare estimates, I bootstrap the quantification procedure 200 times.

For the single group sufficient statistics model, I draw values for the 10 estimated parameters ($\kappa, b_{B u s}, b_{C a r}, b_{T M}, \lambda, \theta \kappa, \beta_{L_{R}}, \beta$ from normal distributions with means equal to the point estimates and standard deviations equal to the standard error of the estimates. I consider only draws which have non-negative commuting elasticities and reduced form elasticities otherwise the model has issues converging. This represents 95% of all drawn parameter vectors. I also disregard a small number of draws with an implausibly large value for the agglomeration elasticity ($\mu_{A}>1$) since this can lead to non-sensical negative welfare estimates. ${ }^{63}$ I then compute confidence intervals across the 200 bootstrap estimates. In Table 6 the estimated parameters are used for welfare estimates in the first two columns so confidence intervals are reported, and the non-parametric p -value for whether the fraction of welfare gains accounted for by VTTS is less than one is simply the fraction of the 200 draws for which this is not true.

For the multigroup model I repeat the same procedure for the 10 estimated parameters ($\left.\kappa, b_{B u s}, b_{C a r}, b_{T M}, \lambda, \theta_{g} \kappa, \eta_{g}, \mu_{A}, \mu_{U}^{g}\right)$

D Additional Model Results

D. 1 Model Inversion

The model contains unobserved location characteristics, such as wages, productivities, amenities and land use wedges. While the presence of agglomeration forces allows for the possibility of multiple equilibria, I am able to recover unique values of composite productivities and amenities that rationalize the observed data as a model equilibrium.

There is a key difference in this process compared to recent quantitative urban models (e.g. Ahlfeldt et. al. 2015). In those models, there is one group of workers. It is straightforward to combine data on residence and employment

[^11]with the model structure provided by the gravity equation in commuting to solve for the unique vector of wages that rationalize the data. To replicate this in a model with multiple skill groups requires data on residence and employment by skill group. While the former are typically available in censuses, I am unaware of datasets that provide employment by skill group across small spatial units within cities. This is where the model's multiple industries become useful. The data contain employment by industry. Intuitively, given the differential demand for skills across industries, the relative employment by industries in a location should be informative about the relative employment across skill groups. The following proposition formalizes this intuition, and shows that a unique vector of group-specific wages can be recovered using data on residence by skill and employment by industry. Obtaining the remaining unobservables is straightforward.

Proposition 3. (i) Wages Given data on residence by skill group $L_{\text {Rig }}$, employment by industries $L_{F j s}$, commute costs $d_{i j a}$ and car ownership shares $\lambda_{a \mid i g}$ in addition to model parameters, there exists a unique vector of wages (to scale) that rationalizes the observed data as an equilibrium of the model.
(ii) Remaining Unobservables Given model parameters, wages and data $\left\{L_{R i g}, \pi_{a \mid i a g}, L_{F j s}, H_{i}, \vartheta_{i}, r_{R i}, r_{F i}\right\}$ there exists a unique vector of unobservables $\left\{u_{i a g}, A_{j s}, X_{j s}, \tau_{i}, \pi\right\}$ (to scale) that rationalizes the observed data as an equilibrium of the model.

The procedure to estimate the parameters of the model proceeds in four steps. First, a subset of parameters are calibrated and estimated without solving the full model. Second, wages are recovered using parameters from the first step. Third, the remaining elasticities are estimated via GMM using moments similar to those in the reduced form analysis. Fourth, with all parameters in hand the model is inverted to recover the remaining unobservables.

D. 2 Calibrating $\alpha_{s g}$

Under the CES aggregator for labor, the relative wage bill paid by firms to high-skill workers in location j and sector s defined as $\lambda_{j s H} \equiv w_{j H} \tilde{L}_{F j H s} / w_{j L} \tilde{L}_{F j L s}$ is

$$
\lambda_{j s H}=\left(\frac{w_{j H}}{w_{j L}}\right)^{1-\sigma}\left(\frac{\alpha_{s H}}{\alpha_{s L}}\right)^{\sigma} .
$$

Taking a double difference of this ratio in sector s relative to a reference sector s^{\prime} gives

$$
\lambda_{j s H} / \lambda_{j s^{\prime} H}=\left(\frac{\alpha_{s H}}{\alpha_{s L}}\right)^{\sigma} /\left(\frac{\alpha_{s^{\prime} H}}{\alpha_{s^{\prime} L}}\right)^{\sigma}
$$

which holds for all workplace locations j. Using that $\alpha_{s L}=1-\alpha_{s H}$ yields

$$
\alpha_{s H}=\frac{\frac{\alpha_{s^{\prime} H}}{1-\alpha_{s^{\prime} H} H} E\left[\lambda_{j s H} / \lambda_{j s^{\prime} H}\right]^{1 / \sigma}}{1+\frac{\alpha_{s^{\prime} H}}{1-\alpha_{s^{\prime} H} H} E\left[\lambda_{j s H} / \lambda_{j s^{\prime} H}\right]^{1 / \sigma}},
$$

where $E\left[\lambda_{j s H} / \lambda_{j s^{\prime} H}\right]$ are observed at the city-level in the ECH data. This allows identification of $\alpha_{s H}$ to scale (relative to the value of $\alpha_{s^{\prime} H}$ in the reference sector). Using the manufacturing sector as the reference sector $s^{\prime}=M$, I pin down $\alpha_{M H}$ with a departure from the spatial aspect of the model and use that under the CES aggregator the
share of the wage bill paid to high-types is

$$
\text { Share of Wage Bill to } \mathrm{H}_{M}=\frac{w_{H}^{1-\sigma} \alpha_{M H}^{\sigma}}{w_{H}^{1-\sigma} \alpha_{M H}^{\sigma}+w_{L}^{1-\sigma}\left(1-\alpha_{M H}\right)^{\sigma}} \text {. }
$$

Plugging in the left hand side (observed at the city-level in the ECH data) along with the average wages w_{H}, w_{L} observed in the manufacturing sector in that data allows me to recover a value for $\alpha_{M H}$.

The results are shown in Table A.9. The first column shows $\alpha_{H s}$ while the second shows the relative wage bill of high-skill workers. We see a sensible and monotonic relationship, where industries such as Education and Financial Services have the highest weight on high-types and Domestic Services and Hotels \& Restaurants have the lowest.

D. 3 Model Solution

Calibrating T_{H}, \bar{h}, p_{a} Given the parameter estimates in the previous section, for any value of T_{g} it is possible to solve for the full distribution of wages across the city. Since the vector T_{g} is not identified to scale, I normalize $T_{L}=1$ and calibrate T_{H} so that the aggregate wage skill premium in the model matches that observed in the data. This involves jointly solving the system of equations for $\left\{T_{H}, w_{j g}\right\}$

$$
\begin{aligned}
\widehat{W P} & =\frac{T_{H} \sum_{i a} \Phi_{R i a H}^{1 / \theta_{H}} \lambda_{i a H}}{\sum_{i a} \Phi_{R i a L}^{1 / \theta_{L}} \lambda_{i a L}} \\
w_{g} & =F_{g}\left(w_{g} ; L_{F s}, L_{R g}, T_{H}\right)
\end{aligned}
$$

where $\widehat{W P}=1.713$ is the wage premium observed in the data, the term next to it is the wage premium as predicted by the model (where $\lambda_{i a g}$ is the share of type- g workers in cell (i, a)), and the operator F_{g} is the system of equations used to solve for wages as a function of observables as given in Section C.8.3.

Next, having solved for wages the parameters \bar{h}, p_{a} are set to exactly match the average expenditure share on housing and cars. In particular, they solve

$$
\begin{aligned}
1-\beta+\bar{h} \sum_{i, a, g} \frac{r_{R i} L_{R i a g}}{E_{i a g}} \lambda_{i a g} & =\hat{\omega}_{H} \\
\sum_{i, g} \lambda_{i g}^{C} \frac{p_{a} P}{T_{g} \Phi_{\operatorname{Riag}}^{1 / \theta_{g}}} & =\hat{\omega}_{C}
\end{aligned}
$$

where P is the aggregate price index, ${ }^{64} \hat{\omega}_{H}=0.3075$ and $\hat{\omega}_{C}=0.1513$ are the aggregate expenditure shares on housing and cars respectively from the GEIH, and $\lambda_{i a g}$ and $\lambda_{i g}^{C}$ are the share of all individuals in cell (i, a, g) and the share of car owners in call (i, g) respectively.

I solve for these parameters to exactly match the observed data in each period. For example, for the post period I obtain $T_{H}=2.016, \bar{h}=1.2097$ and $p_{a}=117.37$ (with 7).

Algorithm for Solving the Model The system of equations to be solved are provided in the proof of proposition 1. In this section, I outline the iterative algorithm used to solve for the equilibrium of the model

1. Guess a vector $w^{0}, \vartheta^{0}, r^{0}, u^{0}, A^{0}$

[^12]2. Given a wage vector $w^{t}, \vartheta^{t}, r^{t}, u^{t}, A^{t}$
(a) Compute $H_{R i}^{t}=\vartheta_{i}^{t} H_{i}, H_{F i}^{t}=\left(1-\vartheta_{i}^{t}\right) H_{i}, \Phi_{R i a g}^{t}=\sum_{j}\left(w_{j g}^{t} / d_{i j a}\right)^{\theta_{g}}$ and $W_{i s}^{t}=\left(\sum_{h} \alpha_{s h}^{\sigma_{L}}\left(w_{i h}^{t}\right)^{1-\sigma_{L}}\right)^{\frac{1}{1-\sigma_{L}}}$.
(b) Compute $P_{t}=\left(\sum_{j, s}\left(\left(\left(W_{j s}^{t}\right)^{\alpha}\left(r_{F j}^{t}\right)^{1-\alpha} / A_{j s}\right)^{1-\sigma}\right)^{\frac{1}{1-\sigma}}\right.$, where $r_{F j}^{t}=\left(1-\tau_{i}\right) r_{i}^{t}$
(c) Compute L_{R}^{t} from
$$
L_{\text {Riag }}^{t}=\bar{L}_{g} \frac{\left(u_{\text {iag }}^{t}\left(T_{g} \Phi_{R i a g}^{1 / \theta}-\bar{h} r_{R i}^{t}-p_{a}^{t} a+\pi^{t}\right) r_{R i}^{\beta-1}\right)^{\eta_{g}}}{\sum_{r, o}\left(u_{\text {rog }}^{t}\left(T_{g} \Phi_{R r o g}^{1 / \theta}-\bar{h} r_{R r}-p_{o}^{t} o+\pi^{t}\right) r_{R r}^{\beta-1}\right)^{\eta_{g}}}
$$
where $p_{a}^{t}=p_{a} P^{t}$ and $\pi^{t}=\bar{L}^{-1}\left(\sum_{i} H_{R i} r_{R i}+H_{F i} r_{F i}\right)$.
(d) Compute labor supply $\tilde{L}_{F i g}^{t}=\left(w_{j g}^{t}\right)^{\theta_{g}-1} \Psi_{j g}^{t}$, where $\Psi_{j g}^{t} \equiv T_{g} \sum_{r, o}\left(\Phi_{R i o g}^{t}\right)^{-\frac{\theta_{g}-1}{\theta_{g}}} d_{r j o}^{-\theta_{g}} L_{R r o g}^{t}$.
(e) Update the main variables
\[

$$
\begin{aligned}
\tilde{w}_{j g} & =\left[\frac{\left(P^{t}\right)^{\sigma-1} X^{t} \sum_{s} B_{i s g} A_{i s}^{\sigma-1}\left(W_{i s}^{t}\right)^{\sigma_{L}-\left(1+\alpha_{s}(\sigma-1)\right)}\left(r_{F i}^{t}\right)^{-\left(1-\alpha_{s}\right)(\sigma-1)}}{\Psi_{j g}^{t}}\right]^{\frac{1}{\sigma_{g}+\sigma_{L}-1}} \\
\tilde{r}_{i} & =\frac{E_{i}^{t}+(1-\alpha) Y_{i}^{t}}{H_{i}} \\
\tilde{\vartheta}_{i} & = \begin{cases}1 & i \in \mathcal{D}_{R} \backslash \mathcal{D}_{F} \\
0 & i \in \mathcal{D}_{F} \backslash \mathcal{D}_{R} \\
\frac{E_{i}^{t}}{E_{i}^{t}(1-\alpha) Y_{i}^{t}} & i \in \mathcal{D}_{F} \cap \mathcal{D}_{R}\end{cases} \\
\tilde{A}_{j s} & =\bar{A}_{j s}\left(\tilde{L}_{F j}^{t} / T_{j}\right)^{\mu_{A}} \\
\tilde{u}_{i a g} & =\bar{u}_{\text {iag }}\left(L_{R i H}^{t} / L_{R i}^{t}\right)^{\mu_{U}}
\end{aligned}
$$
\]

where $X^{t}=\beta \sum_{i, g, a}\left(T_{g}\left(\Phi_{\text {Riag }}^{t}\right)^{1 / \theta_{g}}-p_{a}^{t} a-r_{i}^{t} \bar{h}+\pi^{t}\right) L_{\text {Riag }}$ is aggregate expenditure on goods, $Y_{i}^{t}=$ $\sum_{s}\left(p_{i s}^{t}\right)^{1-\sigma}\left(A_{j s} P^{t}\right)^{\sigma-1} X^{t}$ is firm sales in i and $E_{i}^{t}=r_{i}^{t} \bar{h} L_{R i}^{t}+(1-\beta) \sum_{a, g}\left(T_{g}\left(\Phi_{\text {Riag }}^{t}\right)^{1 / \theta_{g}}-p_{a}^{t} a-r_{i}^{t} \bar{h}+\right.$ $\left.\pi^{t}\right) L_{\text {Riag }}^{t}$ is expenditure on housing.
3. $\left\|(\tilde{w}, \tilde{\vartheta}, \tilde{r}, \tilde{u}, \tilde{A})-\left(w^{t}, \vartheta^{t}, r^{t}, u^{t}, A^{t}\right)\right\|_{\infty}<\epsilon_{\text {tol }}$ then stop. Otherwise, set $\left(w^{t+1}, \vartheta^{t+1}, r^{t+1}, u^{t+1}, A^{t+1}\right)=\zeta\left(w^{t}, \vartheta^{t}, r^{t}, u^{t}, A^{t}\right)+$ $(1-\zeta)(\tilde{w}, \tilde{\vartheta}, \tilde{r}, \tilde{u}, \tilde{A})$ for some $\zeta \in(0,1)$ and return to step 2 .

Since the equilibrium system is only defined to scale (it is homogenous of degree zero), I normalize the geometric mean of wages to one. In order to keep the scale of different variables on the same order of magnitude, I also normalize the geometric mean of floorspace prices to one prior to solving for the model's unobservables. This affects the scale of unobservables such as productivities and amenities, but has no impact on relative differences in exogenous characteristics or endogenous variables across locations or counterfactuals.

D. 4 Benchmarking the Amenity Spillovers

The estimated amenity spillovers can be benchmarked to Diamond (2016) who estimates a spillover of the form $u_{i g}=\bar{u}_{i g}\left(L_{H i} / L_{L i}\right)^{\mu_{U, g}}$ finds on average $\mu_{U} \approx 2.62$. To a first order, in this paper $u_{k i g} \approx \bar{u}_{i k g}\left(L_{H i} / L_{L i}\right)^{\mu_{U, g}\left(1-\pi_{H}\right)}$ where π_{H} is the share of high-skill workers. Using $\pi_{H}=0.3$ from 2005 (the midpoint of the period in question), the average estimate of 0.818 gives $E\left[\mu_{U, g}\right]\left(1-\pi_{H}\right)=0.572$, about one quarter of Diamond (2016).

E Model Extensions

E. 1 Migration

The baseline model considers a closed city with a fixed population. This section relaxes this to allow for migration into the city from the rest of the country.

We assume that workers in Colombia face a choice to live in Bogotá or the rest of the country. Workers make their migration choice based on expected utility in the destination; their expected utility is \bar{U} in Bogotá and $\bar{U}^{\text {Rest }}$ in the rest of the country. This latter term is an exogenous model parameter. Letting individuals have a multiplicative preference $\eta(\omega)$ for each choice distributed Frechet with shape parameter $\rho>0$, the number of workers choosing to live in Bogotá is

$$
\bar{L}=\bar{L}^{C o l}\left(\frac{\bar{U}}{\bar{U}^{\text {Rest }}}\right)^{\rho}
$$

where $\bar{L}^{C o l}$ is the (exogenous) population of the entire country. In changes this yields
where we have assumed that $\hat{\bar{U}}_{\text {rest }}=1$ (i.e. average utility in the rest of Colombia is unaffected by TransMilenio), and $\pi^{B o g}, \pi^{\text {Rest }}$ denote the share of Colombians living in Bogotá and the rest of Colombia respectively in the initial period. The remaining equations of the model are unchanged, this simply turns $\hat{\bar{L}}$ from a model parameter into an endogenous variable.

The change in welfare of Bogotanos is now now $E\left[\bar{U} \eta(\omega) \mid \widehat{\omega \text { chose Bogotá }]=\left[\pi^{B o g} \hat{\bar{U}}^{\rho}+\pi^{R e s t}\right]^{1 / \rho} . . . ~ . . ~}\right.$

E. 2 Congestion

Overview. This section develops an extension of the model that incorporates congestion. While the same system of equations will determine the equilibrium of economic activity in the city given a matrix of commute times, a separate system of equations will be added that determines commute times as a function of economic activity (through the number of commuters). These will then be solved jointly to quantify the response of the equilibrium to a change in infrastructure allowing for congestion.

The extension blends elements from Allen and Arkolakis (2021) and Gaduh et. al. (2022). Commuters travel along a network where census tracts are nodes and adjacent census tracts (in the network sense) are connected by edges. They choose a route between an origin and destination and for each edge in that route they pick a mode. This extension inherits elements from the nested logit model in the paper. If an individual travels using the public nest, they can choose between any mode in that nest (walking, bus, TransMilenio) for each node. However if they travel by the private nest (i.e. car), they travel by car along each edge. Individuals have route-specific Frechet shocks, yielding convenient expressions for $d_{i j}$ as the expected cost over all the routes they might take between i and j. Travel time on roads by car is subject to within-mode congestion through a power function of the volume of car travel along that edge.

Congestion is incorporated by building off the working paper version of Allen and Arkolakis (2021). ${ }^{65}$ Unlike the published version, I allow the elasticity with which commuters choose origin-destination pairs to differ from

[^13]the elasticity with which they choose the particular route to get there. This choice is made for two reasons. First, it is restrictive to require commuters have the same heterogeneity in idiosyncratic preferences across pairs of neighborhoods to live and work as they do across potential routes to get between home and work. For example, commuters may by and large choose the fastest route between home and work (low dispersion in preferences over routes) but tend to choose quite different home and work locations all else equal (high dispersion in preferences over live-work pairs). Second, this choice keeps the economic and traffic modules of the model separate. In so doing, the reduced form elasticities $\boldsymbol{\beta}_{R}, \boldsymbol{\beta}_{F}$ from the baseline model continue to determine the response of economic activity to changes in travel times. The difference is that now, the change in travel times with respect to changes in infrastructure will depend on commuting choices through congestion. The extension borrows the idea from Gaduh et. al. (2022) to incorporate multiple travel modes by allowing commuters to choose routes between origins and destinations across alternative link-mode combinations, but allows for differential substitution patterns across modes when using public transit as opposed to driving.

Traffic Module. To construct a tractable way of incorporating congestion, I model the routing choice of commuters using the discrete choice framework from Allen and Arkolakis (2021). Between each pair of locations is an infrastructure matrix $\mathbf{T}(m)=\left[t_{k l}(m)\right]$ for mode $m \in\{$ Walk,Bus,TransMilenio,Car $\}$, where $t_{k l}(m) \geq 0$ is the minutes of travel between location k and l on mode m. If no direct link exists between k and l on the network of mode m, I set $t_{k l}(m)=\infty$. I also set $t_{k k}(m)=\infty$ to exclude self-loops.

The disutility of travel over link $k l$ using mode m is simply $\exp \left(\kappa t_{k l}(m)+\tilde{b}(m)\right)$, where $\tilde{b}(m)$ is an amenity associated with each mode as in the baseline model. I assume these costs are multiplicative, so that if a commuter chooses a route $r=\left\{i=r_{0}, r_{1}, \ldots, r_{K}=j\right.$) of length K between i and j, the total cost is $\exp \left(\kappa t_{i j r}+\tilde{b}_{r}\right)$ where $t_{i j r}=\sum_{k=1}^{K} t_{r_{k-1}, r_{k}}\left(m_{r_{k-1}, r_{k}}\right)$ and $\tilde{b}_{r}=\sum_{k=1}^{K} \tilde{b}\left(m_{r_{k-1}, r_{k}}\right)$. Note here that $m_{r_{k-1}, r_{k}}$ is the mode chosen on link r_{k-1}, r_{k} of the route. Lastly, I allow commuters to have an idiosyncratic multiplicative preference for a particular route $\exp \left(\nu_{r}(\omega)\right)$, where $\nu_{r}(\omega)$ is distributed T1EV for minima with shape parameter $\lambda>0$. Under the same structure of preferences from the baseline model, indirect utility from choice (i, j, r) is

$$
U_{i j r}(\omega)=\frac{u_{i} w_{j} r_{R i}^{\beta-1}}{\exp \left(\kappa t_{i j r}+\tilde{b}_{r}+\nu_{r}(\omega)\right)} \epsilon_{i j}(\omega)
$$

Assuming that workers first choose where to live and work and then choose which route to commute with and solving this via backward induction, the route choice problem is simply

$$
\min _{r \in P_{K}, K \geq 0}\left\{\exp \left(\kappa t_{i j r}+\tilde{b}_{r}+\nu_{r}(\omega)\right)\right\} .
$$

Workers become car owners with probability $\rho^{C a r}$. If they do not own a car, they choose between public modes only. Properties of the T1EV distribution imply that

$$
\begin{aligned}
E\left[\min _{r \in P_{K}^{P u b}, K \geq 0}\left\{\exp \left(\kappa t_{i j r}+\nu_{r}(\omega)\right)\right\}\right] & =\exp \left(-\kappa \bar{t}_{i j}\right) \\
\text { where } \bar{t}_{i j P u b} & =-\frac{1}{\kappa \lambda} \ln \sum_{K=0}^{\infty} \sum_{r \in P_{K}^{P u b}} \exp \left(-\kappa \lambda \sum_{k=1}^{K}\left[t_{r_{k-1}, r_{k}}\left(m_{r_{k-1}, r_{k}}\right)+\tilde{b}\left(m_{r_{k-1}, r_{k}}\right)\right]\right),
\end{aligned}
$$

where $P_{K}^{P u b}$ are all paths of length K using the public transit network consisting of $m \in\{$ Walk,Bus,TransMilenio $\}$. If a worker does own a car, they can also choose to to travel using the car alone with

$$
\bar{t}_{i j C a r}=-\frac{1}{\kappa \lambda} \ln \sum_{K=0}^{\infty} \sum_{r \in P_{K}^{\text {Car }}} \exp \left(-\kappa \lambda \sum_{k=1}^{K}\left[t_{r_{k-1}, r_{k}}\left(m_{r_{k-1}, r_{k}}\right)+\tilde{b}\left(m_{r_{k-1}, r_{k}}\right)\right]\right)
$$

where $P_{K}^{C a r}$ are all paths of length K using the car network. If a worker owns a car, they decide whether or not to use it to commute and solve max $\left\{\bar{t}_{i j P u b}+\epsilon_{P u b}, \bar{t}_{i j C a r}+\epsilon_{C a r}\right\}$. Assuming the idiosyncratic preference draws $\epsilon_{\text {Pub }}, \epsilon_{C a r}$ are drawn iid from a T1EV distribution, the probability of choosing to travel using the car conditional on owning a car is

$$
P_{i j C a r \mid C a r}=\frac{\exp \left(-\kappa \bar{t}_{i j C a r}\right)}{\exp \left(-\kappa \bar{t}_{i j C a r}\right)+\exp \left(-\kappa \bar{t}_{i j P u b}\right)} .
$$

Note that overall expected utility is

$$
\begin{aligned}
E_{a}\left[\max _{m}\left\{U_{i j m \mid a}(\omega)\right\}\right] & =u_{i} w_{j} r_{R i}^{\beta-1} \epsilon_{i j}(\omega) \times\left[\rho _ { c a r } \left(E \left[\min _{r \in P_{K}^{P u b}, K \geq 0}\left\{\exp \left(\kappa t_{i j r}+\nu_{r}(\omega)\right)\right\}+\epsilon_{P u b}, \min _{r \in P_{K}^{C a r}, K \geq 0}\left\{\exp \left(\kappa t_{i j r}+\nu_{r}(\omega)\right)\right\}\right.\right.\right. \\
& =u_{i} w_{j} r_{R i}^{\beta-1} \epsilon_{i j}(\omega) \times\left[\rho_{c a r}\left(E \max \left\{\exp \left(\kappa \bar{t}_{i j P u b}+\epsilon^{P u b}\right), \exp \left(\kappa \bar{t}_{i j C a r}+\epsilon^{C a r}\right)\right\}\right)+\left(1-\rho_{c a r}\right) \exp \left(\kappa \bar{t}_{i j C a r}\right)\right] \\
& =u_{i} w_{j} r_{R i}^{\beta-1} \epsilon_{i j}(\omega) \times\left[\rho_{c a r}\left(\exp \left(\kappa \bar{t}_{i j O w n C a r}\right)\right)+\left(1-\rho_{c a r}\right) \exp \left(\kappa \bar{t}_{i j P u b}\right)\right]
\end{aligned}
$$

where

$$
\bar{t}_{i j O w n C a r} \equiv-\frac{1}{\kappa} \ln \left[\exp \left(-\kappa \bar{t}_{i j P u b}\right)+\exp \left(-\kappa \bar{t}_{i j C a r}\right)\right]
$$

So altogether

$$
\begin{aligned}
E_{a}\left[\max _{m}\left\{U_{i j m \mid a}(\omega)\right\}\right] & =\frac{u_{i} w_{j} r_{R i}^{\beta-1} \epsilon_{i j}(\omega)}{\exp \left(\kappa \bar{t}_{i j}\right)} \\
\text { where } \bar{t}_{i j} & =-\frac{1}{\kappa} \ln \left[\rho_{C a r} \exp \left(-\kappa \bar{t}_{i j O w n C a r}\right)+\left(1-\rho_{c a r}\right) \exp \left(-\kappa \bar{t}_{i j P u b}\right)\right]
\end{aligned}
$$

This therefore is nested within the simple model of Appendix C.1, with a different formulation of commute costs $d_{i j}$.

Define $\mathbf{A}(m) \equiv\left[a_{k l}(m) \equiv \exp \left(t_{k l}(m)+\tilde{b}(m)\right)^{-\kappa \lambda}\right]$. As in Gaduh et. al. (2022), one can show via induction for the public transit network that

$$
\begin{aligned}
\exp \left(\bar{t}_{i j}\right)^{-\kappa \lambda} & =\sum_{K=0}^{\infty} \mathbf{A}_{i j P u b}^{K} \\
\text { where } \mathbf{A}_{P u b} & =\sum_{m \in \mathcal{B}^{P u b}} \mathbf{A}(m)
\end{aligned}
$$

where $\mathbf{A}_{i j P u b}^{K}$ is the $i j$ element of the K matrix power of the matrix $\mathbf{A}_{P u b}{ }^{66}$ So long as the spectral radius of $\mathbf{A}_{P u b}$

$$
\begin{aligned}
& { }^{66} \text { For } K=1 \text {, we simply have } \\
& \qquad \exp \left(\bar{t}_{i j, 1}\right)^{-\kappa \rho}=\sum_{m} \exp \left(-\kappa \rho t_{i j}(m)\right)=\left[\sum_{m \in \mathcal{B}^{\text {Pub }}} \mathbf{A}(m)\right]_{i j}=\mathbf{A}_{i j P u b} .
\end{aligned}
$$

Now suppose that $\exp \left(\bar{t}_{i j, K}\right)^{-\kappa \rho}=\left[\mathbf{A}_{P u b}^{K}\right]_{i j}$. This is the sum of all weights along all paths between $i j$ of length K. To compute
is less than one, $\sum_{K=0}^{\infty} \mathbf{A}_{i j P u b}^{K}=(\mathbf{I}-\mathbf{A})^{-1} \equiv \mathbf{B}_{P u b}$ and

$$
\bar{t}_{i j P u b}=-\frac{1}{\kappa \lambda} \ln b_{i j P u b},
$$

where $b_{i j P u b}$ is the $i j$ element of $\mathbf{B}_{P u b}$. For the car network, as in Allen and Arkolakis (2021)

$$
\bar{t}_{i j C a r}=-\frac{1}{\kappa \lambda} \ln b_{i j C a r}
$$

where $\mathbf{B}_{C a r} \equiv(\mathbf{I}-\mathbf{A}(c a r))^{-1}$.
To close this module, I need to define how travel costs on each link $t_{k l}(m)$ are determined. I allow these to depend on exogenous characteristics $e_{k l}(m)$ and, for the car network, the traffic using the link $\Xi_{k l}(m){ }^{67}$ through the log-linear functional form

$$
t_{k l}(m)=e_{k l}(m) \Xi_{k l}(m)^{\phi_{m}}
$$

where $\phi_{C a r}>0$ and otherwise is zero. There are $L_{i j C a r}=P_{i j C a r \mid C a r} \rho^{C a r} L_{i j}$ commuters using the car network, and so the number of car trips using a link is therefore

$$
\Xi_{k l}(C a r)=\sum_{i j} \pi_{i j}^{k l}(C a r) L_{i j C a r} .
$$

where $\pi_{i j}^{k l}(C a r)$ is the number of times the average driver between i and j uses link $k l$. The results from Allen and Arkolakis (2021) imply

$$
\pi_{i j}^{k l}(C a r)=\frac{b_{i k C a r} a_{k l}(m) b_{l j C a r}}{b_{i j C a r}}
$$

Letting $\mathbf{L}_{\text {Car }} \equiv\left[L_{i j C a r}\right]$ denote the matrix of commute flows on the car network, this system can be written in matrix form as

$$
\Xi(C a r)=\mathbf{A}(C a r) \odot\left[\mathbf{B}_{C a r}^{\prime}\left(\mathbf{L}_{C a r} \oslash \mathbf{B}_{C a r}\right) \mathbf{B}_{C a r}^{\prime}\right]
$$

where \odot and \oslash are Hadamard product and division operators respectively. This formulation reduces the size of the matrices that need to be stored, since $\mathbf{A}(C a r), \mathbf{B}_{C a r}, \mathbf{L}_{C a r}$ are all $I \times I$ rather than $\left\{\pi_{i j}^{k l}(C a r)\right\}$ which is $I^{2} \times I^{2}$.

Lastly, I define the exogenous portion of travel costs in the same way as Allen and Arkolakis (2021). Assuming travel time is given by $t_{k l}(m)=\left(\text { distance }_{k l} \times \operatorname{speed}_{k l}^{-1}(m)\right)^{\delta_{0}}$ and inverse speed is given by $\operatorname{speed}_{k l}^{-1}(m)=\gamma(m) \times$ $\left(\frac{\Xi_{k l}(m)}{\text { lanes } s_{k l}(m)}\right)^{\delta_{1}(m)} \times \epsilon_{k l}(m)$ where $\gamma(m)$ is a mode-specific shifter and $\epsilon_{k l}(m)$ is a link-mode-specific idiosyncratic term, then
the same for paths of length $K+1$, we simply multiply by the adjacency matrix and sum across all modes that could be taken next

$$
\exp \left(\bar{t}_{i j, K+1}\right)^{-\kappa \rho}=\sum_{m \in \mathcal{B}^{P u b}}\left[\mathbf{A}_{P u b}^{K} \mathbf{A}(m)\right]_{i j}=\left[\mathbf{A}_{P u b}^{K} \sum_{m \in \mathcal{B}^{P u b}} \mathbf{A}(m)\right]_{i j}=\left[\mathbf{A}_{P u b}^{K} \mathbf{A}_{P u b}\right]_{i j}=\left[\mathbf{A}_{P u b}^{K+1}\right]_{i j}
$$

This proves the conjecture.
${ }^{67}$ A previous version of the paper allowed for congestion on the bus and TransMilenio network too.
where $\phi_{m} \equiv \delta_{0} \delta_{1}(m)$.

Traffic Equilibrium. Collecting the previous results, a traffic equilibrium is a vector $\left\{t_{k l}(m), \Xi_{k l}(m), \bar{t}_{i j}\right\}$ that given commute flows $L_{i j}$ and parameters $\delta_{0}, \delta_{1}(m), \tilde{b}(m), \gamma(m)$, lanes $s_{k l}(m)$, distance ${ }_{k l}$ satisfies the system

$$
\begin{aligned}
t_{k l}(m) & =e_{k l}(m) \Xi_{k l}(m)^{\phi_{m}} \\
\Xi(C a r) & =\mathbf{A}(C a r) \odot\left[\mathbf{B}_{C a r}^{\prime}\left(\mathbf{L}_{C a r} \oslash \mathbf{B}_{C a r}\right) \mathbf{B}_{C a r}^{\prime}\right] \\
\bar{t}_{i j P u b} & =-\frac{1}{\kappa \lambda} \ln b_{i j P u b} \\
\bar{t}_{i j C a r} & =-\frac{1}{\kappa \lambda} \ln b_{i j C a r} \\
\mathbf{A}(m) & =\left[\exp \left(t_{k l}(m)+\tilde{b}(m)\right)^{-\kappa \lambda}\right]_{k l} \\
\mathbf{A}_{P u b} & =\sum_{m \in \mathcal{B}^{P u b}} \mathbf{A}(m) \\
\mathbf{A}_{C a r} & =\mathbf{A}(C a r) \\
\mathbf{B}_{P u b} & =\left(\mathbf{I}-\mathbf{A}_{P u b}\right)^{-1} \\
\mathbf{B}_{C a r} & =\left(\mathbf{I}-\mathbf{A}_{C a r}\right)^{-1} \\
L_{i j C a r} & =P_{i j C a r \mid C a r} \rho^{C a r} L_{i j} \\
P_{i j C a r \mid C a r} & =\frac{\exp \left(-\kappa \bar{t}_{i j C a r}\right)}{\exp \left(-\kappa \bar{t}_{i j C a r}\right)+\exp \left(-\kappa \bar{t}_{i j P u b}\right)}
\end{aligned}
$$

The first three rows is a system of as many equations as unknowns, while the second three rows define the auxiliary variables of that system.

I refer to this as the traffic module of the model: it determines travel times $\bar{t}_{i j}$ given a matrix of commute flows \mathbf{L}. Recall that the baseline model pins down changes in economic activity $\left\{\hat{L}_{R i}, \hat{L}_{F i}, \hat{r}_{R i}, \hat{r}_{F i}, \hat{\Phi}_{R i}, \hat{\Phi}_{F i}, \hat{\tilde{\Phi}}_{F i}, \hat{\tilde{L}}{ }_{F i}, \hat{\bar{U}}, \hat{E}\right\}$ given a change in travel times $\left\{\hat{d}_{i j}\right\}$. I therefore also need to express the change in travel times as a function of the change in commute flows. I will model changes in transit infrastructure as a change in the number of lanes on the mode in question, $\widehat{\operatorname{lanes}}_{k l}(m)$. In particular, when simulating the removal of TransMilenio I will set $\widehat{\operatorname{lanes}}_{k l}(m)$ to a very small number $\forall k l, m=$ TransMilenio so that $\hat{t}_{k l}(m) \rightarrow \infty .{ }^{68}$ In response to this change in model parameters, the change in traffic equilibrium can be written as

$$
\begin{aligned}
\hat{t}_{k l}(m) & =\widehat{l a n e s}_{k l}^{-\phi_{m}}(m) \hat{\Xi}_{k l}^{\phi_{m}}(m) \\
\hat{\Xi}_{k l}(\text { Car }) \Xi_{k l}(C a r) & =\left[\mathbf{A}^{\prime}(C a r) \odot\left(\mathbf{B}_{C a r}^{\prime}\right)^{\prime}\left(\mathbf{L}_{C a r}^{\prime} \oslash \mathbf{B}_{C a r}^{\prime}\right)\left(\mathbf{B}_{C a r}^{\prime}\right)^{\prime}\right] \\
\bar{t}_{i j k}^{\prime}-\bar{t}_{i j k} & =-\frac{1}{\kappa \lambda} \ln \left(b_{i j k}^{\prime} / b_{i j k}\right) \quad k \in\{P u b, C a r\} \\
\mathbf{A}^{\prime}(m) & =\left[\exp \left(\hat{t}_{k l}(m) t_{k l}(m)+\tilde{b}(m)\right)^{-\kappa \lambda}\right]_{k l} \\
\mathbf{A}_{P u b}^{\prime} & =\sum_{m \in \mathcal{B}^{P u b}} \mathbf{A}^{\prime}(m) \\
\mathbf{B}_{P u b}^{\prime} & =\left(\mathbf{I}-\mathbf{A}_{P u b}^{\prime}\right)^{-1}
\end{aligned}
$$

[^14]$$
\mathbf{B}_{C a r}^{\prime}=\left(\mathbf{I}-\mathbf{A}^{\prime}(C a r)\right)^{-1}
$$

This provides a system that pins down $\left\{\hat{t}_{k l}(m), \hat{\Xi}_{k l}(C a r), \bar{t}_{i j k}^{\prime}-\bar{t}_{i j k}\right\}$ given data from the initial equilibrium $\left\{\Xi_{k l}(C a r), \tilde{b}(m), t_{k l}\right\}$ and commute flows in the counterfactual equilibrium $\mathbf{L}^{\prime}=\hat{\mathbf{L}} \odot \mathbf{L}$. Since $\hat{d}_{i j}=\exp \left(\kappa\left(\bar{t}_{i j}^{\prime}-\bar{t}_{i j}\right)\right)$ with $\bar{t}_{i j}$ as defined above, this pins down the change in commute costs given the shock to infrastructure $\widehat{l a n e s}_{k l}(m)$ and the change in commute flows $\hat{\mathbf{L}}$. Combining the economic module of the model with the traffic module provides one large system of equations that jointly finds the distribution of changes in economic activity and traffic that is consistent with equilibrium in both modules of the model.

Calibrating the Model. To solve the model in changes, I require values for the parameters $\delta, \delta_{1}(m), \lambda, \tilde{b}(m), \gamma(m)$ and data $t_{k l}(m), \Xi_{k l}(m)$. Note that link-level traffic and travel times are unobserved, so these will be have to be calibrated along with the deep model parameters. ${ }^{69}$

Given a value for the parameters $\delta, \delta_{1}(m), \lambda$, I need to solve for the preference shifters $b(m)$ and speed shifters $\gamma(m)$. I estimate these to match average speed and choice shares for each mode. With these in hand, I can solve for $t_{k l}(m), \Xi_{k l}(m)$ which are consistent with the model and observed data given deep parameters $\delta, \delta_{1}(m), \lambda$.

Lastly, I calibrate these deep traffic parameters $\delta, \delta_{1}(m), \lambda$ to existing values from the literature. First, I set the routing elasticity $\lambda=175$ from Allen and Arkolakis (2019). This implies highly elastic routing choices, so that commuters take close to the least cost route between origins and destinations. Second, as in Allen and Arkolakis (2021) I set $\delta_{0}=1 / \theta$ to match a unit distance elasticity. Lastly, I calibrate $\delta_{1}(C a r)$ to give a congestion elasticity $\phi_{C a r}=\delta_{0} \delta_{1}(C a r)=0.06$, the average congestion elasticity estimated for Bogotá by Duranton and Akbar (2017). $\phi_{m}=0$ for all other modes.

E. 3 Endogenous Floorspace Use with Fixed Housing Supply

This section considers an extension of the baseline model in which total floorspace supply is fixed but the share used for commercial purpose ϑ_{i} is endogenous. To rationalize differences in commercial and residential floorspace prices, we allow for a tax equivalent of zoning regulations which mean that floorspace owners receive $\left(1-\tau_{i}\right) r_{F i}$ for each unit of floorspace allocated to commercial use. Denoting $r_{i}=r_{R i}$, no arbitrage across floorspace use implies $r_{F i}=\left(1-\tau_{i}\right) r_{i}$. This implies that the share of floorspace used for commercial purpose and the floorspace price is pinned down by

$$
\begin{aligned}
& \vartheta_{i}=\frac{H_{F i}}{H_{R i}+H_{F i}}=\frac{(1-\alpha)\left(w_{i}^{\alpha}\left(\left(1-\tau_{i}\right) r_{i}\right)^{1-\alpha}\right)^{1-\sigma} A_{i}^{\sigma-1} E}{(1-\beta) \Phi_{R i}^{1 / \theta} L_{R i}^{\frac{\theta-1}{\theta}}+(1-\alpha)\left(w_{i}^{\alpha}\left(\left(1-\tau_{i}\right) r_{i}\right)^{1-\alpha}\right)^{1-\sigma} A_{i}^{\sigma-1} E} \\
& r_{i}=\frac{(1-\alpha)\left(w_{i}^{\alpha}\left(\left(1-\tau_{i}\right) r_{i}\right)^{1-\alpha}\right)^{1-\sigma} A_{i}^{\sigma-1} E+(1-\beta) \Phi_{R i}^{1 / \theta} L_{R i}^{\frac{\theta-1}{\theta}}}{H_{i}}
\end{aligned}
$$

[^15]These equations hold for mixed use locations with $\vartheta_{i} \in(0,1)$, which one can show to be locations where $\bar{u}_{i}>0$ and $\bar{A}_{i}>0$. If either exogenous amenities or productivities are zero in a location, that location becomes completely specialized in that type of floorspace.

Extending the equilibrium system to incorporate these new equations, and writing in changes assuming unobservables are constant across periods yields the system

$$
\begin{aligned}
\hat{L}_{R i}^{1-\theta \mu_{U}} \hat{r}_{i}^{\theta(1-\beta)} & =\hat{\bar{L}} \hat{U}^{-\theta} \hat{\Phi}_{R i} \\
\hat{r}_{i} & =\frac{\vartheta_{i}\left(\hat{w}_{i}^{\alpha} \hat{r}_{i}^{1-\alpha}\right)^{1-\sigma} \hat{\tilde{L}}_{F i}^{\mu_{A}(\sigma-1)} \hat{E}+\left(1-\vartheta_{i}\right) \hat{\Phi}_{R i}^{1 / \theta} \hat{L}_{R i}^{\frac{\theta-1}{-1}}}{\hat{H}_{i}} \\
\hat{r}_{i}^{(\sigma-1)(1-\alpha)} \hat{\tilde{L}}_{F i}^{\frac{\theta+(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta-1}} & =\left(\hat{\hat{L}} \hat{U}^{-(\theta-1)}\right)^{-\frac{\alpha(\sigma-1)+1}{\theta-1}} \hat{E} \hat{\tilde{\Phi}}_{F i}^{\frac{\alpha(\sigma-1)+1}{\theta-1}} \\
\hat{\vartheta}_{i} & =\frac{\left(\hat{w}_{i}^{\alpha} \hat{r}_{i}^{1-\alpha}\right)^{1-\sigma} \hat{\tilde{L}}_{F i}^{\mu_{A}(\sigma-1)} \hat{E}}{\left(1-\vartheta_{i}\right) \hat{\Phi}_{R i}^{1 / \theta} \hat{L}_{R i}^{\frac{\theta-1}{\theta}}+\vartheta_{i}\left(\hat{w}_{i}^{\alpha} \hat{r}_{i}^{1-\alpha}\right)^{1-\sigma} \hat{\tilde{L}}_{F i}^{\mu_{A}(\sigma-1)} \hat{E}} \\
\hat{w}_{j} & =\left(\left(\hat{\hat{L}} \hat{U}^{-\theta}\right)^{\frac{\theta-1}{\theta}} \frac{\hat{\tilde{L}}_{F j}}{\hat{\tilde{\Phi}}_{F j}}\right)^{\frac{1}{\theta-1}}
\end{aligned}
$$

The two equations for \hat{r}_{i} and ϑ_{i} are no longer log-linear. However, taking logs, differentiating the original system and substituting out for wages yields the following first order approximation of the system

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1-\theta \mu_{U} & \theta(1-\beta) & 0 & 0 \\
-\left(1-\vartheta_{i} \frac{\theta-1}{\theta}\right. & \left(1+\vartheta_{i}(\sigma-1)(1-\alpha)\right) & \vartheta_{i}(\sigma-1)\left(\frac{\alpha}{\theta-1}-\mu_{A}\right) & 0 \\
0 & (\sigma-1)(1-\alpha) & \frac{\theta+(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta-1} & 0 \\
\frac{\left(1-\vartheta_{i}\right)(\theta-1)}{\theta} & (\sigma-1)(1-\alpha)\left(1+\vartheta_{i}\right) & -\left(1-\vartheta_{i}\right)(\sigma-1)\left[\mu_{A}-\frac{\alpha}{\theta-1}\right] & 1
\end{array}\right]\left[\begin{array}{c}
\ln \hat{L}_{R i} \\
\ln \hat{r}_{i} \\
\ln \tilde{\tilde{L}}_{F i} \\
\ln \hat{\vartheta}_{i}
\end{array}\right]=} \\
& {\left[\begin{array}{c}
1 \\
\left(1-\vartheta_{i}\right) \frac{1}{\theta} \\
0 \\
-\left(1-\vartheta_{i}\right) \frac{1}{\theta}
\end{array}\right] \ln \hat{\Phi}_{R i}+\left[\begin{array}{c}
0 \\
\vartheta_{i} \frac{(\sigma-1) \alpha}{\theta-1} \\
\frac{1+\alpha(\sigma-1)}{\theta-1} \\
\frac{\alpha(\sigma-1)\left(1-\vartheta_{i}\right)}{\theta-1}
\end{array}\right] \ln \hat{\tilde{\Phi}}_{F i}} \\
& +\left[\begin{array}{c}
\theta \ln {\hat{v_{k}}}^{2}+\ln \hat{\bar{L}}-\theta \ln \hat{\bar{U}} \\
-\vartheta_{i}(\sigma-1) \alpha\left(\frac{1}{\theta} \ln \hat{\bar{L}}-\ln \hat{\bar{U}}\right)-\vartheta_{i} \alpha(\sigma-1) \ln \hat{E}-\ln \hat{H}_{i}-\vartheta_{i}(1-\alpha)(\sigma-1) \ln \left(\widehat{1-\tau_{i}}\right) \\
(\sigma-1) \ln \hat{\bar{A}}_{i}-\frac{\alpha(\sigma-1)+1}{\theta}(\ln \hat{L}-\theta \ln \hat{\bar{U}})+\ln \hat{E} \\
(\sigma-1)\left(1-\vartheta_{i}\right) \ln \hat{\bar{A}}_{i}-\vartheta_{i} \ln \hat{E}-\vartheta_{i}(1-\alpha)(\sigma-1) \ln \left(\hat{1-\tau_{i}}\right)-\alpha(\sigma-1)\left(1-\vartheta_{i}\right)\left[\frac{1}{\theta} \ln \hat{\bar{L}}-\ln \hat{\bar{U}}\right]
\end{array}\right]
\end{aligned}
$$

Now the A, b_{R}, b_{F} terms have data in them through the initial floorspace share terms ϑ_{i}. This system can once again be written as

$$
\ln \hat{\mathbf{y}}_{i}=A^{-1} b_{R} \ln \hat{\Phi}_{R i}+A^{-1} b_{F} \ln \hat{\Phi}_{R i}+\mathbf{e}_{i}
$$

where $A=\left[\begin{array}{cccc}\left(1-\theta \mu_{U}\right) I & \theta(1-\beta) I & \mathbf{0} & \mathbf{0} \\ -\left(1-\operatorname{diag}\left(\vartheta_{i}\right)\right) \frac{\theta-1}{\theta} & \left(1+\operatorname{diag}\left(\vartheta_{i}\right)(\sigma-1)(1-\alpha)\right) & \operatorname{diag}\left(\vartheta_{i}\right)(\sigma-1)\left(\frac{\alpha}{\theta-1}-\mu_{A}\right) & \mathbf{0} \\ \mathbf{0} & (\sigma-1)(1-\alpha) I & \frac{\theta+(\sigma-1)\left(\alpha-\mu_{A}(\theta-1)\right)}{\theta-1} I & \mathbf{0} \\ \frac{\left(1-\operatorname{diag}\left(\vartheta_{i}\right)\right)(\theta-1)}{\theta} & (\sigma-1)(1-\alpha)\left(1+\operatorname{diag}\left(\vartheta_{i}\right)\right) & -\left(1-\operatorname{diag}\left(\vartheta_{i}\right)\right)(\sigma-1)\left[\mu_{A}-\frac{\alpha}{\theta-1}\right] & I]_{4 I \times 4 I}, ~\end{array}\right.$

$$
\begin{aligned}
& b_{R}=\left[\begin{array}{c}
I \\
\frac{1}{\theta} I \\
\mathbf{0} \\
-\left(I-\operatorname{diag}\left(\vartheta_{i}\right)\right) \frac{1}{\theta}
\end{array}\right]_{4 I \times I} \\
& b_{F}=\left[\begin{array}{c}
\mathbf{0} \\
\frac{\alpha(\sigma-1)}{\theta-1} I \\
\frac{1+\alpha(\sigma-1)}{\theta-1} I \\
\frac{\alpha(\sigma-1)}{\theta-1}\left(I-\operatorname{diag}\left(\vartheta_{i}\right)\right)
\end{array}\right]_{4 I \times I}
\end{aligned}
$$

Two insights follow from comparing this system to the equilibrium in the baseline model. First, there are now heterogenous elasticities across locations since the A^{-1} matrix contains data on initial land shares which differ by location. Second, since A is no longer block diagonal, each outcome now depends on both RCMA and FCMA.

E. 4 Housing Supply Adjustment and Land Value Capture

Housing Supply. This section outlines the extension of the model allowing for a housing supply response to the transit infrastructure. First, we consider a model where housing supply can freely adjust in each location, and floorspace use is endogenous as in Section E.3. Housing is produced according to the Cobb-Douglas technology $H_{i}=T_{i}^{1-\eta} K_{i}^{\eta}$. The price of capital is normalized to one. Defining the production function on one unit of land as $h_{i}=k_{i}^{\eta}$ where $k_{i} \equiv K_{i} / T_{i}$, developers solve the problem

$$
\max _{k_{i}} k_{i}^{\eta} r_{i}-k_{i}-p_{i}
$$

where p_{i} is the price of land in i. This yields the density of construction per unit of land of $k_{i}=\left(\eta r_{i}\right)^{\frac{1}{1-\eta}}$ and profits $\tilde{\eta}_{i}^{\frac{1}{1-\eta}}-p_{i}$ were $\tilde{\eta} \equiv \eta^{\frac{\eta}{1-\eta}}$. The price of land adjusts so that developers earn zero profits $p_{i}=\tilde{\eta} r_{i}^{\frac{1}{1-\eta}}$. Total housing supply is then given by $H_{i}=T_{i}\left(\eta r_{i}\right)^{\frac{\eta}{1-\eta}}$. The share of floorspace allocated to commercial use ϑ_{i} is determined as in Section E.3. The remainder of the model equations are unchanged; this housing supply condition is simply added to them. To ensure this fits the data in the initial period, a residual $\zeta_{i}=H_{i} / T_{i}\left(\eta r_{i}\right)^{\frac{\eta}{1-\eta}}$ is introduced so that the effective units of land are actually $T_{i} \zeta_{i}$. This wedge can be interpreted as the quality of land.

Land Value Capture. In the Land Value Capture scheme, only a subset of locations are allowed to have their floorspace adjust.

Under the distance-based scheme, locations $i \in \mathcal{I}$ within 500 m from a station are allocated a 30% increase in floorspace. Their floorspace is allowed to increase up to a maximum of 30%, but not decrease (which is the relevant case for a relatively short 16 year time horizon). That is,

$$
\hat{H}_{i}= \begin{cases}\max \left\{1,\left(\hat{r}_{i}\right)^{\frac{\eta}{1-\eta}}\right\} & \text { if } i \in \mathcal{I} \text { and } \max \left\{1,\left(\hat{r}_{i}\right)^{\frac{\eta}{1-\eta}}\right\}<1.3 \\ 1.3 & \text { if } i \in \mathcal{I} \text { and } \max \left\{1,\left(\hat{r}_{i}\right)^{\frac{\eta}{1-\eta}}\right\}>1.3 \\ 1 & \text { if } i \notin \mathcal{I} .\end{cases}
$$

Perfect competition ensures the price of the permits adjust so that that developers earn zero profits, so income from the scheme is $\left(H^{\prime}-H_{i}\right) r_{i}^{\prime}$ where prices are evaluated in the new equilibrium.

Under the CMA-based scheme, locations are allocated permits proportional to their change in CMA $\vartheta_{i} \Delta \ln \Phi_{R i}+$
$\left(1-\vartheta_{i}\right) \Delta \ln \Phi_{F i}$ so that the number of potential new permits (or, equivalently, the maximum amount of new floorspace created) is the same as under the distance-based scheme. Here ϑ_{i} is the commercial floorspace share in the initial equilibrium and the CMA changes are those using the baseline measure that hold population and employment fixed at their initial levels, so this is all information which the policy maker would have at the time of the intervention.

Parameterization. In the quantitative exercises, a conservative choice for the housing elasticity is made so that $\eta /(1-\eta)=0.7$ to match the most inelastic cities in the US from Saiz (2010). This value corresponds to his value for Oakland, CA which is ranked the 6th most inelastic city, one position behind San Francisco and San Diego (3rd and 4th) and a couple ahead of New York and Chicago (9th and 12th). I also shut down spillovers for a conservative estimate, especially in the open city case where a large value for the amenity spillover can lead to larger changes in population than in the baseline model.

E. 5 Employment in Domestic Services

This section outlines the extension of the model that incorporates employment in domestic services. I begin by noting the following facts. First, between 2000-2014 in the GEIH 7.3\% of non-college educated Bogotanos worked as domestic helpers while almost no college educated workers did. Second, in the 2014 Multipurpose Survey I observe that 30.3% of college-educated households employ domestic services, compared to only 3.6% of non-college households. Third, conditional on employing domestic servants households spend on average 0.15 of their income on their wages, a fraction that remains constant with income. Unfortunately employment in domestic services by employment location is reported neither in the census nor in the CCB. Therefore, given that 90% of domestic servants are employed in college educated households, I impute domestic employment by assigning each worker equally to high skilled households and scaling up until the total matches the number observed in the GEIH.

These observations motivate the following extension of the model. I assume that only high-skilled households consume domestic services while only low-skilled workers are used in its production. I also assume domestic services enter the utility of the high skilled according to Cobb-Douglas preferences with an expenditure share of $0.045\left(=0.303^{*} 0.15\right)$. That is, I assume the common component of utility is given by

$$
U_{H}=C^{1-\beta_{H}-\beta_{D}}(H-\bar{h})^{\beta_{H}} D^{\beta_{H}^{D}}
$$

In each location, a perfectly competitive firm produces domestic services under the linear technology $Y_{i D}=\tilde{L}_{F i L}$. The cost is therefore equal to the low-skill wage $p_{i}^{D}=w_{L i}$. Market clearing for domestic services therefore requires that

$$
\beta_{D} E_{i H}=p_{i}^{D} D_{i}=\frac{w_{L i} \tilde{L}_{F i L}^{D}}{\bar{A}_{D i}}
$$

where $\bar{A}_{D i}$ is a residual that ensures this condition holds and reflects factors that make i more or less easy to work in as a domestic servant.

The equilibrium equations of the model remain the same, apart from the labor demand equation which becomes

$$
\tilde{L}_{F i g}=w_{i g}^{-\sigma_{L}} P^{\sigma-1} E \sum_{s} B_{i s g} A_{i s}^{\sigma-1} W_{i s}^{\sigma_{L}-\left(1+\alpha_{s}(\sigma-1)\right)} r_{F i}^{-\left(1-\alpha_{s}\right)(\sigma-1)}+\mathbb{I}_{g L} \frac{\beta_{H}^{D} E_{i H}}{w_{L i}}
$$

and the expression for residential populations for high skilled which becomes

$$
L_{R i a g}=\bar{L}_{g} \frac{\left(u_{i a g}\left(T_{g} \Phi_{R i a g}^{1 / \theta}-\bar{h} r_{R i}-p_{a} a\right) r_{R i}^{\beta-1} w_{L i}^{\beta_{g}^{D}}\right)^{\eta_{g}}}{\sum_{r, o}\left(u_{r o g}\left(T_{g} \Phi_{R r o g}^{1 / \theta}-\bar{h} r_{R r}-p_{o} o\right) r_{R r}^{\beta-1} w_{L r}^{\beta_{g}^{D}}\right)^{\eta_{g}}}, g=H
$$

The other ingredients of the model are unchanged. The procedure to solve the model and unobservables is unchanged, other than for wages. The system of equations is extended to include the domestic service sector:

$$
D_{i g}(w)=w_{i g}^{\theta_{g}}\left[\sum_{s} \frac{L_{R s g}}{\sum_{k} w_{k g}^{\theta_{g}} d_{s k}^{-\theta_{g}}} d_{s i}^{-\theta_{g}}\right]-\left[\sum_{s} \frac{\left(w_{i g} / \alpha_{s g}\right)^{-\sigma}}{\sum_{h}\left(w_{i h} / \alpha_{s h}\right)^{-\sigma}} \frac{\bar{\epsilon}_{i s}}{\bar{\epsilon}_{i g}} L_{F i s}+L_{F i D} \mathbb{I}_{g L}\right]
$$

where $\mathbb{I}_{g L}$ is a dummy for whether g is L, and $L_{F i D}$ is employment in domestic services as described above.

E. 6 Home Ownership

This section outlines the extension of the model that allows for local home ownership across worker groups to match the ownership rates observed in the data. In the data, home ownership rates are 0.603 and 0.457 for college and non-college individuals respectively in 2015. Letting o_{L} and o_{H} be the shares of home owners in the data, I therefore assume that total income is given by

$$
\frac{w_{j g} \epsilon_{j}(\omega)}{d_{i j a}}+o_{g} \frac{E_{i}}{L_{R i}}
$$

where $E_{i}=\sum_{g, a}\left(r_{R i} \bar{h}+(1-\beta)\left(\bar{y}_{i a g}-p_{a} a-r_{R i} \bar{h}+\pi_{i g}\right)\right) L_{\text {Riag }}$ is total expenditure on housing by residents of i, $L_{R i}$ are total residents in i and $\pi_{i g} \equiv o_{g} \frac{E_{i}}{L_{R i}}$ is income from home ownership. That is, the model is the same with one replacement of π with $\pi_{i g}$. The remaining equilibrium equations and procedure to solve for unobservables are easily extended to incorporate this change.

F Data Appendix

This section provides supplementary information on the data used in this paper.

F. 1 Dataset Description

Population

The primary source of population data is DANE's General Census of 1993, 2005 and 2018. This contains the population in each block by education-level. I define "college" educated workers to be those with more than postsecondary education (defined by the level achieved during their last complete year of study). This contains both conventional universities and technical colleges, but the small size of the latter means the results are not sensitive to this grouping. My main results include adults 20 and older; the results are robust to including individuals of all ages. ${ }^{70}$

[^16]
Commuting

Commuting data comes from the city's Mobility Survey administered by the Department of Mobility and overseen by DANE. Conducted in 2005, 2011 and 2015, these are household surveys in which each member was asked to complete a travel diary for the previous day. For 1995, I obtained the Mobility Survey undertaken by the Japan International Cooperation Agency (JICA) to similar specifications as the DANE surveys. The samples sizes are similar across years, including 141,316 trips for 73,830 individuals in 20,002 households per round on average. ${ }^{71}$ I include only trips that originate or end in municipal Bogotá in the analysis. ${ }^{72}$ Sampling weights are also provided.

The survey reports the demographic information of each traveller and household, including age, education, gender, industry of occupation, car ownership and in some years income. ${ }^{73}$ For each trip, the data report the departure time, arrival time, purpose of the trip, mode, as well as origin and destination UPZ. ${ }^{74}$ Since all trips are reported, these include commutes (trips to work) as well as for other purposes (e.g. shopping, seeing friends). Reported modes are often quite detailed (e.g. 25 options in 2011); I often aggregate into car, bus, TransMilenio, and others (walking, bicycle, motorbike). Trips on TransMilenio trunk and feeder buses are reported separately, so I consider TransMilenio trips to be those involving at least one stage on a trunk bus (multiple modes can be reported in a single trip).

Housing

As described in the main text, the mission of the cadastre is to keep the city's geographical information up to date and thus 98.6% of the city's more than 2 million properties are included. ${ }^{75}$ The city is recognized as a pioneer on the continent for the quality of its cadastre (Anselin and Lozano-Gracia 2012). In addition to having an updated record of the city's layout, the cadastre is important for the government due to its importance in city revenues: in 2008, for example, property taxes accounted for 19.8% of Bogotá's tax revenues (Uribe Sanchez 2010). These taxes depend on assessed property values. In developed countries, property valuations are typically determined using data on market transactions. However, Bogotá, like most developing cities, lacks comprehensive records of such data. The city circumvents this by assessing property prices as follows. First, they collect available data on transactions through outreach to the real estate sector (Uribe Sanchez 2010). Second, through a census-like process officials collect information on property sales announced through signs and local newspapers, survey these properties and then contact the owners pretending to be potential buyers. They negotiate to get as close as possible to an actual sales price and record the final value, under the premise of a cash payment (Anselin and Lozano-Gracia 2012). Third, the city hires teams of professional assessors to value at least one property in one of each of the city's "homogenous zones", which currently exceed 16,000 (Ruiz and Vallejo 2010). ${ }^{76}$ The net effect of these efforts should be that a comprehensive record of property values which are less prone to under-reporting for tax avoidance.

[^17]The city then combines this data on actual and assessed valuations with building characteristics to construct assessed values for each property. By law, during every updating process each parcel must surveyed by enumerators using a "parcel form" that contains more than 60 questions about the property.

One concern is whether properties surveys and assessments are made very infrequently, with annual changes based solely on an aggregate inflation rate. While assessments are indeed inflated on a yearly basis, information for individual properties is frequently updated through visits: between 2000 and 2006 over 1,036,000 properties were updated, while a large push in 2008-2009 updated all of the city's 2 million properties (Ruiz and Vallejo 2010). ${ }^{77}$ My primary focus on long-differences in housing market outcomes ensures that data for essentially all properties was updated.

To validate the valuations in the cadastre, I compare these assessed values per m 2 in 2014 with purchase prices per room reported in DANE's 2014 Multipurpose Survey. This survey is a slightly more detailed version of the household survey discussed below. One question asks respondents to report the purchase price and year for their current home. I keep the 5,497 observations for which the purchase was made in the past 10 years, ${ }^{78}$ and compute the average price per room within each locality (the smallest geographical unit in the survey). I merge these yearlocality observations with the average price per m2 of residential floorspace in the cadastral database, and take weighted averages of both cadastral and reported unit prices across years where I weight by the number of observations in each year. Figure A. 8 plots the average cadastral price against the reported purchase price, normalizing each variable to have unit mean. The measures have a high correlation coefficient of 0.947 , with the majority of observations lying along the 45-degree line. Importantly, there appears to be no deviation of the relationship for expensive neighborhoods, which we would expect if cadastral values were systematically over- or under-valuing these properties. ${ }^{79}$ Consistent with the city's efforts, it appears that property values in the cadastral data are fairly accurate representations of actual property prices throughout the city.

Finally, to construct comparable measures of floorspace prices by census tract I purge property prices driven by differences in building composition by regressing log floorspace prices per m 2 on property characteristics (age bins, point bins) and a set of census tract fixed effects, and recover these fixed effects.

Employment (Firms)

The employment data used in this paper comes from two sources. The first is a census of the universe of establishments from DANE's 2005 General Census and 1990 Economic Census. Panel A of Table A. 10 presents some summary statistics. There are many small firms in both years: while average firm size is close to 5 employees, the median firm only has 2 employees while firm size at the 90 th percentile is between 6 and 7.

The second source is a database of all registered establishments from Bogotá's Chamber of Commerce (CCB by its Spanish acronym) in 2000 and 2015. The 2015 dataset contains the block of each establishment, its industry and, in many cases, the number of employees. Keeping only observations with non-missing values for all 3 variables leaves around 126,867 observations as reported in Panel B. In 2000 neither the number of employees nor the block are reported, but it does provide the address. Bogotá's clear grid system made it straightforward to geolocate the

[^18]vast majority of these. ${ }^{80}$ Retaining establishments with non-missing industry codes left 34,332 observations.
Two aspects of the CCB data need addressing. First, there is the absence of employment data for 2000. I therefore rely on establishment counts as a measure of employment when using the CCB in the main analysis. In the 2015 data, I compute the number of establishments in a locality as well as the mean employment and find a correlation of 0.033 . In the 2005 census, the correlation is 0.09 . Since average establishment size is fairly constant across the city, this suggests establishment counts are a fairly good proxy for employment.

Second, the coverage of establishments is much lower than in the census. While aggregate coverage gaps will not matter for the analysis, relative differences across the city will pose a problem since relative changes in employment in the CCB data may not be representative of actual changes (for example, if informal employment is more likely to be located in certain areas than others). ${ }^{81}$ I diagnose the representativeness of the CCB dataset by comparing its spatial distribution of establishments with that reported in the 2005 census. Panels (a) and (b) Figure A. 7 plots the density of establishments in each locality in the CCB dataset in each year on the y-axis against the density of establishments in the 2005 census on the x-axis, normalizing both variables to have unit geometric mean. Both figures show a reassuringly tight relationship, with correlations of 0.948 and 0.949 respectively. Importantly, the majority of localities lie along the 45-degree line regardless of whether they are poor (Ciudad Bolivar, Kennedy, Bosa, Tunjuelito) or rich (Chapinero, Usaquen), implying that the coverage is fairly uniform across different types of neighborhoods. Panel (c) confirms that the uniform coverage holds across smaller spatial units, by comparing establishment counts across 631 sectors.

Employment (Workers)

Worker-level employment data comes from DANE's Continuing Household Survey (ECH) between 2000 and 2005, and its extension into the Integrated Household Survey (GEIH) for the 2008-2014. These are monthly labor market surveys covering approximately 10,000 households in Bogotá each year. In the external processing room of DANE's offices in Bogotá, I was able to access versions of these datasets with the block of each household provided. ${ }^{82}$ The sampling scheme is a repeated cross-section, and so while it is possible to document changes within geographic areas it is not possible to track individuals over time. The survey includes questions pertaining to individual and household characteristics, as well details on employment such as income, hours worked and industry of occupation across primary and secondary jobs.

Maps and other Datasets

The city provides a geodatabase for use in ArcMap containing spatial datasets on the features of Bogotá. From the road layer I extract shapefiles for primary, secondary and tertiary roads. Walk routes consist of the union of the road network in addition to some smaller pedestrian-only paths. The routes of the bus official bus system (which was integrated towards the end of 2012) are also provided. Given that the aim of the government was to bring the provision of existing routes under one integrated system, I use these current routes to measure the location of the

[^19]bus network throughout the period. ${ }^{83}$ Since buses tended to ignore posted bus stops, I create random bus stops every 250 m along each route. The database also includes TransMilenio stations and routes, as well as the routes of feeder buses (which I create stops for in the same way as for normal buses). Finally, I use the topographical layer to compute the slope of land across the city in the computation of the least cost construction path instrument.

In all datasets above, the spatial units are either defined through the Cadastre or DANE's classification. The city's geodatabase provides a map of the geography used by the Cadastre (down to the property-level), while DANE provides a shapefile for their map at the block-level. Luckily, these spatial units remained essentially constant during my period of study. ${ }^{84}$ I merge the Cadastre's map to DANE's to use as consistently across analyses, and compute the distance from each tract centroid to particular features (CBD, nearest main road, nearest TransMilenio station in each year) in ArcMap. I place the central business district at the center of the high employment density area in the center-east of the city. This is the historical center of the city cited in the literature; when including this variable in regressions I will allow for a different coefficient depending on whether a tract is in the North, West or South of the city in order to account for the different types of neighborhoods in each axis of the city.

Geographic units referred to in the paper consist of localities (19), UPZs (113), sectors (631), census tracts or sections $(2,799)$ and blocks $(43,672)$.

Lastly, data on crime come from the Bogotá police department, and report the GPS location of all reported violent, property and sexual crimes between 2007 and 2013.

F. 2 Computing Commute Times

I compute commute times using the Network Analyst toolbox in ArcMap. This accepts as inputs a set of points to be used as origins and destinations (census tract centroids in my setting), as well as a network consisting of a set of edges and nodes at which these edges can be traversed. Each edge of the network is assigned a cost to travel along it; the toolbox then uses Djikstra's algorithm to compute the least cost paths connecting any origin-destination pair.

In my setting, the networks are defined separately for each mode of transit. The walk network consists of single layer of pedestrian paths. The car network consists of the union of primary, secondary and tertiary roads, that can be joined at any intersection, each of which is associated with a different speed. The bus network is comprised of bus routes described above as well as the walk network; the two intersect only at bus stops which are placed randomly every 250 m . The TransMilenio network consists of the trunk network (which can only be entered at stations), the feeder bus network (which can be entered at stops placed in the same was as for buses), and the walk network. ${ }^{85}$ In order to compute the time cost to traverse each edge of these networks, it remains to assign a speed to each mode.

While Section G provided evidence that speeds were not changing on routes affected by TransMilenio relative to other locations, Table A. 12 shows that aggregate speeds were not quite constant over the period. There was a significant reduction in speeds between 1995 and 2005 (a period of city expansion), which remained relatively constant thereafter. I therefore seek to assign two sets of speeds to match the distribution of observed commute times in the "pre" and "post" periods. In the main results, I use the average of both but provide evidence in

[^20]robustness checks that the results are similar if either set of times is used separately. Finally, note that average speeds reflect the net effect of traveling on different road types (for cars), modes (for buses and TransMilenio) as well as wait times incurred at transfers.

I set speeds to match travel times observed in the data for commutes to and from work during rush hours in the Mobility Surveys (departing between $5-8 \mathrm{am}$ and $4-6 \mathrm{pm}$). I set walk speeds to $5 \mathrm{~km} / \mathrm{h}$ in all years (Ahlfeldt et. al. 2015). Car speeds were reportedly as high as $27 \mathrm{~km} / \mathrm{h}$ (Steiner and Vallejo 2010) in early years, while the Department of Mobility reports average speeds along main roads of $24 \mathrm{~km} / \mathrm{h}$ from 2010-2015. To allow for additional time spent parking and slower speeds during rush hours, I set speeds of $20 \mathrm{~km} / \mathrm{h}, 14 \mathrm{~km} / \mathrm{h}$ and $10 \mathrm{~km} / \mathrm{h}$ on primary, secondary and tertiary roads respectively for the pre-period, and $14 \mathrm{~km} / \mathrm{h}, 10 \mathrm{~km} / \mathrm{h}$ and $8 \mathrm{~km} / \mathrm{h}$ for each type during the post-period. Buses were reported to travel at $10 \mathrm{~km} / \mathrm{h}$ during rush hour before TransMilenio, with some estimates as low as $5 \mathrm{~km} / \mathrm{h}$ (ESMAP 2009; Muller 2014). I set bus speeds of $13 \mathrm{~km} / \mathrm{h}$ and $11 \mathrm{~km} / \mathrm{h}$ for the pre- and post-period respectively, and set transfer times of 4 minutes to enter or exit the network by foot implying a total of 8 minutes spent waiting on each trip. Finally, most reports cite system speeds of $26.2 \mathrm{~km} / \mathrm{h}$ for trunk service on TransMilenio routes (Cracknell 2003; Transportation Research Board 2003). However, this was for earlier years and reports suggest speeds may have slowed later on. I therefore set speeds of $26 \mathrm{~km} / \mathrm{h}$ for the pre-period and $20 \mathrm{~km} / \mathrm{h}$ for the post-period. I set the speed of feeder buses equal to those of regular buses, and again impose a 4 minute transfer time to enter or exit each network. ${ }^{86}$

Figure A. 10 explores how these predicted times compare with those observed in the data. I construct observed times for each mode using those reported in the Mobility survey for rush hour trips to and from work, and create an average for each origin-destination UPZ pair. I construct the predicted time for the same trip by taking an areaweighted average of the commute times calculated in Arc between each census tract pair within the UPZ pair. I use 1995 as the pre-period for each mode other than TransMilenio for which I use 2005, and 2015 as the post-period. For each mode, the times are highly correlated with the majority of observations lying close to the 45 -degree line.

In the main results, I use the average of the pre- and post-period calibrated commute times from ArcMap. In columns (1)-(3) of Table A.14, I run difference in difference specifications to formally test whether the coefficient from a regression of \log observed times on \log (average) predicted times changes over time. The difference in slopes in the third row are insignificant for cars and TransMilenio, but is positive for the case of buses. However, inspection of Figure A. 10 suggests this is driven by a drop in the intercept for 2015 caused b y movements in the left tail: overall the majority of points lie along the 45 -degree line in both years. ${ }^{87}$ Finally, the last column examines whether the relationship between predicted and observed times is constant across modes within a year. The insignificant coefficients in rows 4-8 confirm this to be the case.

F. 3 Constructing the Instruments

Least Cost Construction Path From Transportation Research Board (2007), I obtain engineering estimates for building BRT on different types of land. Their estimates suggest it costs $\$ 4 \mathrm{~mm}$ to build a mile of BRT by converting a median arterial busway, $\$ 25 \mathrm{mn}$ to build a new bus lane on vacant land, $\$ 50 \mathrm{mn}$ to build an elevated lane and

[^21]$\$ 200 \mathrm{mn}$ to build a tunnel. ${ }^{88}$ The maximum grade of BRT is 10% for short runs (Barr et. al. 2010), so I assume tunnels are built on land steeper than that. I assume that building over developed land costs twice as much as vacant land. ${ }^{89}$ I then digitize a land use map of the city in 1980 produced by the United States Defense Mapping Agency (Figure A.11, panel (a)) and clean the image into vacant, arterial road, water and developed land use categories. I infill the medians that can be seen in between a handful of large main roads throughout the city, so that these are also coded as arterial. I then compute the share of each land use category in each 20 m by 20 m pixel, and use a topographical shapefile to compute the average slope in each pixel. Multiplying the share of each land use type by the prior cost estimates yields a cost to build BRT on each pixel. Panel (b) of Figure A. 11 shows the results, with lighter shades representing higher cost.

I read this cost raster into Matlab, and use the Fast Marching Method to compute the least cost routes between portals and the CBD. Panel (c) of Figure A. 11 shows the resulting paths. We see that for the majority of cases, the actual lines follow the least cost routes suggesting that conditional on the locations of origin and destinations the costs were a large driver of actual placement. To construct the final input for ArcMap, I create stops every 700m to match the spacing of TransMilenio stations. I add instruments for the Feeder routes by placing a 2 km radius disk around each portal connecting the two with 8 "spokes", and create stops every 250 m .

Tram System From Morrison (2007), I obtained an image of the city's tram system that was last placed in 1921 and stopped operating in $1951 .^{90}$ Since the city was far smaller at that time, I digitize the shapefile and extend the routes to the edge of the city in present day. This might reduce concerns about the direct effects of the tram instrument, since the large portions of it were not built. Panel (d) of Figure A. 11 shows the extended lines (as well as the originals). As before, I create stops every 700 m and construct the least cost commute times in ArcMap using the same speed of travel as trunk lines.

Instrument Construction These procedures provide counterfactual TransMilenio networks. To construct the pairwise travel times under each instrument, I take the modern street and transit network and then replace the Transmilenio with the networks implied by the two instruments. I then recalculate travel times for each pair over the counterfactual networks.

F. 4 Cost-Benefit Calculations

This section presents some of the calculations behind the cost figures in Table A.7. Phase 1 of the system cost $\$ 5.85 \mathrm{~mm}$ per km to build in 2003 dollars. ${ }^{91}$ This was financed through local fuel taxes (46%), national government grants (20%), a World Bank loan (6%) and other local funds (28%). Phase 2 was more expensive at $\$ 13.29 \mathrm{~mm}$ per km in 2003 dollars, with funding coming from the national government (66%) and a local fuel surcharge (34%).

[^22]The higher costs were due to road widening, increased investment in public space and associated infrastructure improvements. Phase 3 continued the trend costing $\$ 20 \mathrm{~mm}$ per km in 2014 dollars. Averaging over the 41 km of lines in phase 1 and 2 and 21 km of lines in phase 3, the average construction cost for the whole 103 km network as of phase 3 was $\$ 14.08 \mathrm{~mm}$ in 2016 dollars.

Operating costs are recovered at the farebox by private operators; the cost to transport a passenger is close to the fare (Transportation Review Board 2003). Using the figure of 565 mm rides in 2013 from BRT Data (2017) and the fare of $\$ 0.66$ in 2016 dollars yields an operational cost of $\$ 372.97 \mathrm{~mm}$ per year.

GDP in Bogotá in 2016 from DANE ${ }^{92}$ is equal to 221,456 bn 2016 Colombian Pesos, equivalent to $\$ 72.57 b n$ in 2016 dollars.

G Supplementary Empirical Results

G. 1 TransMilenio Trip Characteristics

Table A. 11 presents some descriptives of trips taken in Bogotá in 2015. Three points are worth emphasizing. First, TransMilenio is an important mode of transit constituting 16\% of all trips, exceeding the 13.7% taken by cars but less than the roughly 34% taken by bus and walking. Second, the average TransMilenio trip is 10.5 km , far longer than the 6.6 km and 6.1 km average trips taken by other motorized transport. The fixed costs involved in reaching and entering stations make the benefits of BRT pronounced for longer journeys. Third, when compared to other modes we see that TransMilenio is primarily used for trips to work and business. These constitute around 40% of trips on the system. For private matters or shopping, walking is by far the dominant mode, reflecting that these trips tend to be shorter and closer to home. TransMilenio's outsized role in commuting motivates the focus on its effects on access to jobs emphasized in this paper.

Table A. 12 examines how each mode's role in commuting has evolved over time. Panel A shows the changes in each mode's share of commutes to work. TransMilenio's rise has been primarily at the expense of a reduction in bus trips. Panel B shows that TransMilenio is on average 26.7% faster than buses and roughly the same speed as trips taken by cars. ${ }^{93}$ TransMilenio speeds have fallen over time as the system has become congested with greater use over time. Changes in aggregate speeds on cars and buses appears not so correlated with TransMilenio ridership: speeds fall significantly between 1995 and 2005 (a period of significant population growth of over 29\%) while stabilizing between 2005 and 2015. This highlights the role of external aggregate shocks, such as urbanization lead by the country's civil war, that motivates the more local analysis pursued in this paper. Panel C reports a mild fall in the share of car owners consistent with its decreased role in commuting. However, the persistently higher proportion of car owners vs car commuters reflects the importance of cars for other trip purposes.

[^23]
G. 2 Impact on Other Mode Speeds

BRT may affect equilibrium speeds through impacts on travel mode and route choices, and the number of lanes available for other traffic. In Bogotá, the number of lanes available for other traffic was left unchanged: one might then expect TransMilenio to have reduced congestion faced by cars and other buses. To examine the impact of TransMilenio on car and bus speeds, I run regressions of the form

$$
\ln \text { Speed }_{i j k t}=\alpha_{i j}+\beta \text { TM Route }{ }_{i j} \times \operatorname{Post}_{t}+\gamma_{t}^{\prime} X_{i j k t}+\epsilon_{i j t}
$$

separately for each mode. Here (i, j) indexes a UPZ origin-destination pair, k indexes an individual, Post_{t} is a dummy equal to one in 2015 and zero in $1995,{ }^{94}$ and $X_{i j k t}$ is a vector of control variables containing individual and trip characteristics, which are allowed to have time-varying effects on speeds. All specifications include a gender dummy, hour of departure dummies and age quantile dummies, origin and destination locality fixed effects, each interacted with the Post dummy. Certain specifications additionally control for log trip distance interacted with the Post dummy.

The variable TM Route ${ }_{i j}$ captures whether the trip from i to j has been "treated" by TransMilenio. To define this measure, I compute the routes for the least cost commutes between each pair of UPZ origin and destination in ArcGIS separately for cars and buses. I then intersect this route with the TransMilenio network (within a 100 m tolerance) to compute the share of a trip that lies along a TransMilenio line. With this in hand, I create two treatment measures. The first is simply the share of a trip that lies along a TransMilenio line. The second is a dummy for whether more than 75% of the trip is adjacent to TransMilenio, allowing for a non-linear effect on speed.

Table A. 13 presents the results. Once the composition of trips is properly controlled for (columns 2 and 4, since trips intersecting with TransMilenio are more likely to be longer going from the outskirts to the city center), TransMilenio has no impact on neither car nor bus speeds. Note this only identifies relative changes in speeds: any aggregate effect TransMilenio had on the overall level of speeds would be absorbed into the intercept. Consistent with a small congestion elasticity, Akbar and Duranton (2017) find the elasticity of speed with respect to the number of travelers is only 0.06 during peak hours in Bogotá, while Akbar et. al. (2021) find that only 15% of differences in driving speeds in Indian cities are due to congestion.

G. 3 Impact on Housing Supply

Table A. 15 provides evidence that TransMilenio had no significant impact housing development. The outcome variable is the growth of total floorspace in a census tract between 2000 and $2018 .{ }^{95}$ The specification is otherwise the same as from the baseline specification. Columns 1 and 2 show no significant impact of either CMA term on floorspace supply. Column 3 provides a robustness check regressing floorspace supply on log distance to each phase of the system, confirming the previous results. It does appear more development may be happening around the third phase (the negative coefficient on \ln Distance F3), but the effect is insignificant. Column 4 interacts distance to each phase with a dummy for whether a tract is above the median tract distance from the CBD, to test if more development is occurring near TransMilenio at the periphery. This does not appear to the case as all the interactions are insignificant.

[^24]Figure A. 6 repeats the main event study from Figure 3 with floorspace area as the outcome, and shows no significant effect either before or after on property development. While there is a noisy increase in development in 8 to 4 years before line opening, this is neither significant nor enough to show up in the aggregate numbers in Table A. 15 .

Overall, there was no significant new development close to TransMilenio stations. Reports suggest that constraints to re-development restricted the supply response (Cervero et. al. 2013), in large part due to no significant change in zoning regulations that remained unchanged over the period.

G. 4 Impact on Wages and Sorting

Table A. 16 examines the impact of market access on income by place of residence. It runs a difference-in-difference specification similar to (16) to examine the effect of improved RCMA on log average weekly labor income reported by full-time workers between 18 and 55 across UPZs. Since the survey is a sample survey, there are not many observations in each census tract in each period and so the variation in RCMA is aggregated to the UPZ-level. Standard errors are clustered by UPZ and Post-period pair in Panel A, and by UPZ in Panel B.

Column (1) shows a strong association between improved access to jobs and incomes over the period. However, column (2) controls for the changing educational composition of workers and shows that about half of the relationship is explained by re-sorting of workers by skill. The result is qualitatively unchanged when controlling for hours worked in column (3) (i.e. when looking at the wage). While my cross-sectional data do not allow me to control for individual fixed effects, that wages rise even when controlling for changing worker characteristics supports the idea that CMA reflects accessibility to high-paid jobs. The last row also reports the results from a test of whether the coefficient on \log RCMA equals $1 / \theta$, and in both panels this cannot be rejected.

Table A. 17 examines TransMilenio's impact on the educational composition of residents. The outcome is the change in a tract's share of college-educated residents between 2018 and 1993. In 1993 this is measured within all adults 18 or older, and in 2018 this is measured within adults 40 and older. This is to try to look within a cohort, since the overall college share grew substantially over this period. Results are not sensitive to this choice. Column 1 shows a semi-elasticity of 0.05 of the change in the college share to the change in RCMA. Column 2 examines whether this is mechanical: if the change in RCMA is correlated with the initial college share there may be mechanically more or less room for the share to increase in exposed locations. Controlling for the initial college share has little qualitative effect on the coefficient, increasing it slightly. These results suggest the college educated tended to move into neighborhoods with improved accessibility due to TransMilenio. This is consistent both with the results in Table A.16, as well as the sorting channel in the model whereby the rich are more likely to move into neighborhoods with appreciating house prices since they spend a smaller fraction of income on housing.

G. 5 Impact of Both Types of CMA

The baseline model predicts no impact of FCMA on residential outcomes and no impact of RCMA on commercial outcomes (see proof of Proposition 1). Table A. 18 extends the baseline specification to include both types of CMA separately in the regressions. In general, the results are noisy: conditional on the set of controls, there does not appear to be a huge amount of residual variation in RCMA conditional on FCMA within a locality and vice versa. For five out of seven outcomes (residential population, commercial prices, commercial floorspace share and census employment) the basic prediction that RCMA affects residential outcomes and FCMA affects commercial outcomes
holds in the data, although many of these specifications are noisy. For residential floorspace prices the effect is similar for both types of CMA, although the effect is noisy and neither coefficient can be distinguished from zero. For establishment counts in the CCB, the impact is positive only for RCMA. ${ }^{96}$

Even the fact that floorspace shares are observed to change to TransMilenio already suggests some basic assumptions from the simple model are not borne out in the data, since it assumes floorspace use shares are fixed. Appendix E. 3 extends the model to include this, and shows that a weighted average of CMA types will now matter for outcomes in each location, where the weights depend on the initial floorspace shares across residential and commercial uses. In fact, this would be the correct regression framework to use to fully test the model given that changes in floorspace use shares are observed in the data. However the log-linear reduced form no longer holds and the constant CMA elasticities are replaced with a more complex matrix of elasticities (where a location's weight on each change in CMA depends on its initial floorspace use share). Given the parsimony of the basic model, I focus on this for the main results. The full model allows for endogenous floorspace use.

G. 6 Main Results: Robustness

Table A. 1 assesses the robustness of the main results to a number of alternative specifications. First, I use alternative ways to aggregate mode-specific commute times and alternative travel speeds on each mode (columns 2 to 4). Second, I vary the commute elasticity θ to 1.5 and 0.5 times its estimated value (columns 5 and 6). Third, I consider only tracts within 3 km a TransMilenio station to ensure the results are not driven by outliers at implausible distances from the network (column 7). Fourth, I use heteroscedasticity robust standard errors and standard errors clustered at the sector level (560 administrative units above the census tract) in columns 8 and 9 . Fifth, I exclude tracts within 1 km of a portal (compared to the 500 m exclusion in Table 2) to further ensure the results are not driven by the targeting of these neighborhoods (column 10). Sixth, I control for distance to a tract's closest TransMilenio station interacted with distance to the CBD (column 11). This assesses whether the CMA effect is simply due to heterogeneity of the distance effect at different distances from the CBD (a possibility given the trends in Figure 1). Reassuringly, the results are robust to this, highlighting how the key source of identifying variation is local changes in RCMA within localities.

Seventh, I run an unweighted regression for the change in establishments which is weighted by the initial share of establishments in a tract in the main results (Table A.5). The unweighted results are significant as controls are added, but become noisy and insignificant in the full specification in column 3 (p-value of 0.15). I use the weighted regressions in the main results for two reasons. First, we might expect noise in the CCB data which is a database of establishments registered with the city's chamber of commerce rather than a census. Weighting by initial shares places more weights on tracts where establishment growth is more precisely estimated. Second, I document sharp positive impacts of CMA on the share of floorspace used for commercial purposes (another measure of the changing allocation of real production activity). Taken together, these suggest employment is indeed responding to TransMilenio.

[^25]
[^0]:

 and Autocorrelation Consistent (HAC) standard errors (Conley (1999)) with a 0.5 km bandwidth reported in parentheses in columns other than (8).

[^1]: *Note: Instruments are the differential growth inf instrumented RCMA for high-type vs low-type, and the growth of instrumented RCMA for high-skill interacted with initial house prices (controls allowing for a separate effect of initial house prices on population growth also included).

[^2]: ${ }^{53}$ Appendix G shown housing supply was unaffected by TransMilenio, so I consider these as fixed location characteristics. This assumption is relaxed in Section 5.3. Appendix G also shows that there were no significant relative changes in car and bus speeds along routes most affected by TransMilenio, so I assume travel times are fixed in the baseline model. This is relaxed in Panel C of Table 6.

[^3]: ${ }^{54}$ See Appendix C.8.4 for a derivation. The model with separate residential and employment location decisions covered in Appendix C. 6 has the more familiar form $\bar{y}_{i} \equiv \Phi_{R i}^{1 / \theta}$.
 ${ }^{55}$ Given evidence on highly localized spatial spillovers (Rossi-Hansberg et. al. 2010; Ahlfeldt et. al. 2015), I do not allow for spillovers across locations given the size of census tracts. Previous versions of the paper show how the regression framework in that model still holds but outcomes depend both on a location's own CMA and those nearby.

[^4]: ${ }^{56}$ Existence of the equilibrium and conditions for uniqueness were established in a previous version of the paper. Alternative assumptions over population mobility between Bogotá and the rest of the country are covered in Proposition 1.

[^5]: ${ }^{57}$ The contents of the residual and reduced form parameters are outlined in Appendix C.7. The residual contains changes in unobserved amenities and residential floorspace for residential outcomes, and changes in unobserved productivities and commercial floorspace for commercial outcomes.

[^6]: ${ }^{58}$ While these gains ultimately make their way back to workers who own the housing stock, these equilibrium price effects do not matter to a first order.

[^7]: ${ }^{59}$ Note that solving these expressions yields

 $$
 \left(\begin{array}{c}
 \beta_{L_{R}} \\
 \beta_{r_{R}} \\
 \beta_{r_{F}} \\
 \beta_{L_{F}}
 \end{array}\right)=\left(\begin{array}{c}
 \frac{\beta}{\beta+\theta\left(1-\beta-\mu_{U}\right)} \\
 \frac{1-\mu_{U}}{\beta+\theta\left(1-\beta-\mu_{U}\right)} \\
 \frac{\sigma}{1+\theta\left(\frac{\sigma}{\sigma-1} \frac{1}{\alpha+\mu_{A}}-1\right)} 1 \\
 \frac{\sigma}{(\sigma-1)\left(\alpha+\mu_{A}\right)} \frac{1}{1+\theta\left(\frac{\sigma}{\sigma-1} \frac{1}{\alpha+\mu_{A}}-1\right)}
 \end{array}\right)
 $$

[^8]: ${ }^{60}$ Once these are recovered, a unique to-scale solution for $\tilde{\Phi}_{F i}$ is simply recovered from (33).

[^9]: ${ }^{61}$ Note that

[^10]: ${ }^{62}$ These solutions are unique to scale. In practice, as discussed in Section D.3, I normalize the geometric mean of wages and floorspace prices to one. This affects the scale of unobservables such as productivities and amenities, but has no impact on relative differences in exogenous characteristics or endogenous variables across locations or counterfactuals.

[^11]: ${ }^{63}$ Including these simulations widens the 90% and 95% confidence intervals to ($-0.027,8.481$) and $[-1.035,10.754]$ respectively.

[^12]: ${ }^{64}$ This can be computed given calibrated wages and productivities, as well as observed commercial floorspace prices.

[^13]: ${ }^{65}$ This version is Allen and Arkolakis (2019).

[^14]: ${ }^{68}$ Since $\hat{e}_{k l}(m)=\widehat{\text { lanes }}_{k l}(m)^{-\phi_{m}}$, setting lanes equal to zero in the counterfactual would leave $\hat{e}_{k l}(m)=\infty$ and the new equilibrium would be undefined.

[^15]: ${ }^{69}$ To construct these, I need values for distance $_{k l}$ and lanes $_{k l}(m)$. For walk, car and bus networks these are computed between adjacent census tracts. distance $_{k l}$ is the minimum distance on each mode's network between adjacent tract centroids along the network. For non-adjacent tracts or adjacent tracts not connected by a network, distance $e_{k l}=\infty$. For the TransMilenio network, distance $_{k l}$ is finite for two census tracts that are directly connected via the network, i.e. there is no stop between them. The number of lanes is equal to one for any pair of connected tracts for the walk, bus and TransMilenio network. For the car network, I first construct dummies for whether a paid is connected via primary, secondary and tertiary connections (which are not mutually exclusive; a pair can be connected via multiple road types). I then assign 5 lanes to primary connections, 2 to secondary connections and 1 to tertiary connections to approximate the road widths documented in Google Earth, and then compute the total number of lanes between a pair as the sum all road type connections (i.e. the maximum number of lanes is 8).

[^16]: ${ }^{70}$ The data provided to me by DANE provided population totals by education level and age across 10 year age bins.

[^17]: ${ }^{71}$ Minima-maxima across years are (i) 117,217-169,766 trips, (ii) 58,313-91,765 individuals and (iii) 15,519-28,213 households.
 ${ }^{72}$ Municipal Bogotá accounts for 85% of the residents of the Bogotá metropolitan area, and only 5% of employment in municipal Bogotá comes from outside the municipality (Akbar and Duranton 2017)
 ${ }^{73}$ The 1995 survey reports raw income, while in 2011 and 2015 eight income bin dummies are reported.
 ${ }^{74}$ In certain years more precise spatial information is reported, such as address of origin and destination in 2011, but UPZ are consistently reported across all years.
 ${ }^{75}$ I confirmed this comprehensive coverage by overlaying the shapefile of plots with data over satellite images.
 ${ }^{76}$ These zones are determined by employees of the cadastral office who physically walk around the city and classify each neighborhood into a zone of similar attributes based on observation and their knowledge of the city. Criteria used to define "homogeneity" include categories for main activities, access to public services, and dominant land use. This process is extremely cost intensive, representing around 73% of the total costs of estimating cadastral values (Anselin and Lozano-Gracia 2012).

[^18]: ${ }^{77}$ Updated assessments and property transaction records were conducted throughout, with assessments for each homogenous zone being updated during the 2008-2009 comprehensive update.
 ${ }^{78}$ The results are not sensitive to this choice.
 ${ }^{79}$ Of course, while it is possible that values in the Multipurpose survey themselves are biased, there is no strong reason to think this would be the case since DANE enumerators are well-trained in making clear that responses are anonymous and for statistical purposes only.

[^19]: ${ }^{80}$ The success rate was around 95%. Addresses in Bogotá are of the form C26\#52-18 which stands for the 26th street (Calle in Spanish) and 52nd avenue, 18 meters from the intersection.
 ${ }^{81}$ Note that I also require the coverage of the CCB to be representative of overall employment across 1-digit industries used in the analysis, too. I find this indeed to be the case, the correlation between the share of establishments in each 1 digit industry in the CCB data vs the 2005 census is 0.991 in 2015 and 0.984 in 2000.
 ${ }^{82}$ Public versions provide no additional geographic information within the city

[^20]: ${ }^{83}$ While I acknowledge this might introduce measurement error in the bus network location for early years, the strong association between predicted times and those observed in the 1995 Mobility Survey suggests this is a fairly good approximation.
 ${ }^{84}$ For the cadastre, while old properties were partitioned and new ones created, the underlying block structure and "barrios" remained unchanged (up to new ones being added as the city grew). Similarly, existing blocks and census tracts DANE's map were kept in almost all instances unchanged, again up to new blocks being added between 2005 and 1993.
 ${ }^{85}$ From the commuting data, I observe that the majority of trips taken by TransMilenio do not involve other buses (other than feeders). Therefore I exclude the bus network in the construction of the baseline TransMilenio.

[^21]: ${ }^{86}$ I decided on these times to balance the reported speeds in the literature and matching those in the data. Unfortunately, there was not a simple way to automate the procedure to choose speeds that matched the fit with the data since each creation of a Network dataset in ArcMap must be done manually.
 ${ }^{87}$ Attempts to shift the intercept by varying the fixed time cost within reasonable bounds had negligible effects on this specification.

[^22]: ${ }^{88}$ These numbers are close to the costs of $\$ 8 \mathrm{mn}$ per mile in 2003 USD reported by the first phase of TransMilenio (Transportation Research Board 2003).
 ${ }^{89}$ All figures are in 2004 USD and are per mile of construction. Since I have less guidance over the cost of building on developed land, I experimented with higher values and found the routes were unchanged.
 ${ }^{90}$ The chief of the Liberal Party was assassinated during an international conference in Bogota in 1948, after which riots led to the destruction of one quarter of the city's trams. Combined with the demand for higher capacity transit, this led to the retiring of the trams and their replacement with buses. While trams operated on rail lines, the buses that followed shared roads with cars.
 ${ }^{91}$ All figures from Baltes et. al. (2006), except the cost per km for phase 3 which is from https://www.esci-ksp.org/archives/project/bogota-brt-colombia.

[^23]: ${ }^{92}$ Source: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales/cuentas-nacionales-departamentales-pib-trimestral-bogota-d-c
 ${ }^{93}$ Note that these are observed door-to-door speeds rather than system speeds: TransMilenio buses are reported to operate faster than the results in Table A. 12 suggest, but queueing at stations and time taken to walk between stations and final destinations decrease average observed speeds. Average speeds are also conflated by the different nature of trips taken across modes (such as TransMilenio being used for longer trips, which are typically faster). Section F. 2 compares speeds across modes controlling for trip characteristics and composition, and reports that while the relative performance of TransMilenio is more muted it remains a substantive improvement over existing buses.

[^24]: ${ }^{94}$ Results are similar when intermediate years are included, and are omitted for clarity.
 ${ }^{95}$ I use the Davis-Haltiwanger growth rate $g_{i}=\left(X_{i t}-X_{i t-1}\right) /\left(0.5 \times\left(X_{i t}+X_{i t-1}\right)\right)$ which allows me to incorporate tracts with no development in 2000.

[^25]: ${ }^{96}$ Digging into exactly why this result is occurring did not lead to clear conclusions. I interpret this as due to the finite sample nature of the data whereby running enough specifications will lead to some unexpected results in a finite dataset.

